These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 2317800)
1. Tropomyosins of human mammary epithelial cells: consistent defects of expression in mammary carcinoma cell lines. Bhattacharya B; Prasad GL; Valverius EM; Salomon DS; Cooper HL Cancer Res; 1990 Apr; 50(7):2105-12. PubMed ID: 2317800 [TBL] [Abstract][Full Text] [Related]
2. Disordered metabolism of microfilament proteins, tropomyosin and actin, in mouse mammary epithelial cells expressing the Ha-ras oncogene. Bhattacharya B; Ciardiello F; Salomon DS; Cooper HL Oncogene Res; 1988; 3(1):51-65. PubMed ID: 3060798 [TBL] [Abstract][Full Text] [Related]
3. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Raval GN; Bharadwaj S; Levine EA; Willingham MC; Geary RL; Kute T; Prasad GL Oncogene; 2003 Sep; 22(40):6194-203. PubMed ID: 13679858 [TBL] [Abstract][Full Text] [Related]
4. Human fibroblast tropomyosin isoforms: characterization of cDNA clones and analysis of tropomyosin isoform expression in human tissues and in normal and transformed cells. Novy RE; Lin JL; Lin CS; Lin JJ Cell Motil Cytoskeleton; 1993; 25(3):267-81. PubMed ID: 7916663 [TBL] [Abstract][Full Text] [Related]
5. Retinoic acid induces expression of the interleukin-1beta gene in cultured normal human mammary epithelial cells and in human breast carcinoma lines. Liu L; Gudas LJ J Cell Physiol; 2002 Nov; 193(2):244-52. PubMed ID: 12385002 [TBL] [Abstract][Full Text] [Related]
7. Sorting of tropomyosin isoforms in synchronised NIH 3T3 fibroblasts: evidence for distinct microfilament populations. Percival JM; Thomas G; Cock TA; Gardiner EM; Jeffrey PL; Lin JJ; Weinberger RP; Gunning P Cell Motil Cytoskeleton; 2000 Nov; 47(3):189-208. PubMed ID: 11056521 [TBL] [Abstract][Full Text] [Related]
8. Suppression of syntheses of high molecular weight nonmuscle tropomyosins in macrophages. Nakamura Y; Sakiyama S; Takenaga K Cell Motil Cytoskeleton; 1995; 31(4):273-82. PubMed ID: 7553914 [TBL] [Abstract][Full Text] [Related]
9. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Foster KW; Frost AR; McKie-Bell P; Lin CY; Engler JA; Grizzle WE; Ruppert JM Cancer Res; 2000 Nov; 60(22):6488-95. PubMed ID: 11103818 [TBL] [Abstract][Full Text] [Related]
10. Expression and regulation by serum of multiple FGF1 mRNA in normal transformed, and malignant human mammary epithelial cells. Renaud F; El Yazidi I; Boilly-Marer Y; Courtois Y; Laurent M Biochem Biophys Res Commun; 1996 Feb; 219(3):679-85. PubMed ID: 8645241 [TBL] [Abstract][Full Text] [Related]
11. Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Willipinski-Stapelfeldt B; Riethdorf S; Assmann V; Woelfle U; Rau T; Sauter G; Heukeshoven J; Pantel K Clin Cancer Res; 2005 Nov; 11(22):8006-14. PubMed ID: 16299229 [TBL] [Abstract][Full Text] [Related]
12. Role of a signal transduction pathway which controls disassembly of microfilament bundles and suppression of high-molecular-weight tropomyosin expression in oncogenic transformation of NRK cells. Masuda A; Takenaga K; Kondoh F; Fukami H; Utsumi K; Okayama H Oncogene; 1996 May; 12(10):2081-8. PubMed ID: 8668333 [TBL] [Abstract][Full Text] [Related]
13. Epithelial cells are an important source of tenascin in normal and malignant human breast tissue. Lightner VA; Marks JR; McCachren SS Exp Cell Res; 1994 Feb; 210(2):177-84. PubMed ID: 7507849 [TBL] [Abstract][Full Text] [Related]
14. Suppression of synthesis and utilization of tropomyosin in mouse and rat fibroblasts by transforming growth factor alpha: a pathway in oncogene action. Cooper HL; Bhattacharya B; Bassin RH; Salomon DS Cancer Res; 1987 Aug; 47(16):4493-500. PubMed ID: 3496963 [TBL] [Abstract][Full Text] [Related]
15. Increased expression of specific protein tyrosine phosphatases in human breast epithelial cells neoplastically transformed by the neu oncogene. Zhai YF; Beittenmiller H; Wang B; Gould MN; Oakley C; Esselman WJ; Welsch CW Cancer Res; 1993 May; 53(10 Suppl):2272-8. PubMed ID: 8097963 [TBL] [Abstract][Full Text] [Related]
16. The caM kinase, Pnck, is spatially and temporally regulated during murine mammary gland development and may identify an epithelial cell subtype involved in breast cancer. Gardner HP; Ha SI; Reynolds C; Chodosh LA Cancer Res; 2000 Oct; 60(19):5571-7. PubMed ID: 11034105 [TBL] [Abstract][Full Text] [Related]
17. Expression of CSF-I and CSF-I receptor by normal lactating mammary epithelial cells. Sapi E; Flick MB; Rodov S; Carter D; Kacinski BM J Soc Gynecol Investig; 1998; 5(2):94-101. PubMed ID: 9509388 [TBL] [Abstract][Full Text] [Related]
18. Expression of growth factors and oncogenes in normal and tumor-derived human mammary epithelial cells. Zajchowski D; Band V; Pauzie N; Tager A; Stampfer M; Sager R Cancer Res; 1988 Dec; 48(24 Pt 1):7041-7. PubMed ID: 3191480 [TBL] [Abstract][Full Text] [Related]
19. Promoter hypermethylation of the SFRP2 gene is a high-frequent alteration and tumor-specific epigenetic marker in human breast cancer. Veeck J; Noetzel E; Bektas N; Jost E; Hartmann A; Knüchel R; Dahl E Mol Cancer; 2008 Nov; 7():83. PubMed ID: 18990230 [TBL] [Abstract][Full Text] [Related]
20. Changes in gene expression in established human mammary tumor cell lines when compared with normal breast and breast tumor tissue. Hall L; Henney A; Ralphs DN; Herries DG; Craig RK Cancer Res; 1986 Nov; 46(11):5786-94. PubMed ID: 3756922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]