These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23178336)

  • 1. A sub-1-volt nanoelectromechanical switching device.
    Lee JO; Song YH; Kim MW; Kang MH; Oh JS; Yang HH; Yoon JB
    Nat Nanotechnol; 2013 Jan; 8(1):36-40. PubMed ID: 23178336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lorentz Force-Actuated Bidirectional Nanoelectromechanical Switch with an Ultralow Operation Voltage.
    Li D; Yan J; Zhang Y; Wang J; Yu L
    Nano Lett; 2024 Sep; 24(37):11403-11410. PubMed ID: 39083658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.
    Niroui F; Wang AI; Sletten EM; Song Y; Kong J; Yablonovitch E; Swager TM; Lang JH; Bulović V
    ACS Nano; 2015 Aug; 9(8):7886-94. PubMed ID: 26244821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-terminal nanoelectromechanical switch based on tungsten nitride--an amorphous metallic material.
    Mayet AM; Hussain AM; Hussain MM
    Nanotechnology; 2016 Jan; 27(3):035202. PubMed ID: 26636189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated 4-terminal single-contact nanoelectromechanical relays implemented in a silicon-on-insulator foundry process.
    Li Y; Worsey E; Bleiker SJ; Edinger P; Kulsreshath MK; Tang Q; Takabayashi AY; Quack N; Verheyen P; Bogaerts W; Gylfason KB; Pamunuwa D; Niklaus F
    Nanoscale; 2023 Nov; 15(43):17335-17341. PubMed ID: 37856244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Finite Element Method Simulation of Perforated Graphene Nano-Electro-Mechanical (NEM) Switches.
    Zulkefli MA; Mohamed MA; Siow KS; Yeop Majlis B; Kulothungan J; Muruganathan M; Mizuta H
    Micromachines (Basel); 2017 Jul; 8(8):. PubMed ID: 30400428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Platform for Fast Low-Voltage Nanoelectromechanical Switching.
    Han J; Nelson Z; Chua MR; Swager TM; Niroui F; Lang JH; Bulović V
    Nano Lett; 2021 Dec; 21(24):10244-10251. PubMed ID: 34874728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoelectromechanical contact switches.
    Loh OY; Espinosa HD
    Nat Nanotechnol; 2012 Apr; 7(5):283-95. PubMed ID: 22543427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition.
    Dong K; Choe HS; Wang X; Liu H; Saha B; Ko C; Deng Y; Tom KB; Lou S; Wang L; Grigoropoulos CP; You Z; Yao J; Wu J
    Small; 2018 Apr; 14(14):e1703621. PubMed ID: 29479803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches.
    Jasulaneca L; Livshits AI; Meija R; Kosmaca J; Sondors R; Ramma MM; Jevdokimovs D; Prikulis J; Erts D
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33419203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolithic-3D (M3D) Complementary Metal-Oxide-Semiconductor-Nanoelectromechanical (CMOS-NEM) Hybrid Reconfigurable Logic (RL) Circuits.
    Ko JW; Choi WY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4176-4181. PubMed ID: 31968437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Region Formation of Nanoelectromechanical (NEM) Devices for Complementary-Metal-Oxide-Semiconductor-NEM Co-Integration.
    Cha TM; Jo HC; Kwon HS; Choi WY
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6123-6127. PubMed ID: 31026920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CMOS-NEMS Copper Switches Monolithically Integrated Using a 65 nm CMOS Technology.
    Muñoz-Gamarra JL; Uranga A; Barniol N
    Micromachines (Basel); 2016 Feb; 7(2):. PubMed ID: 30407403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation Techniques for Nanoelectromechanical (NEM) Relay.
    Cho K; Shin C
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6615-6618. PubMed ID: 29677845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Nanoelectromechanical Switching in the Operation of Nanostructured Bi2Se3 Interlayers between Conductive Electrodes.
    Kosmaca J; Andzane J; Baitimirova M; Lombardi F; Erts D
    ACS Appl Mater Interfaces; 2016 May; 8(19):12257-62. PubMed ID: 27111150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches - materials solutions and operational conditions.
    Jasulaneca L; Kosmaca J; Meija R; Andzane J; Erts D
    Beilstein J Nanotechnol; 2018; 9():271-300. PubMed ID: 29441272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Notched Anchor Design for Low Voltage Operation of Nanoelectromechanical (NEM) Memory Switches.
    Kang MH; Jo HC; Choi WY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4198-4202. PubMed ID: 31968441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Finite Element Simulation of Graphene Nano-Electro-Mechanical Switches.
    Kulothungan J; Muruganathan M; Mizuta H
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. >1000-Fold Lifetime Extension of a Nickel Electromechanical Contact Device via Graphene.
    Seo MH; Ko JH; Lee JO; Ko SD; Mun JH; Cho BJ; Kim YH; Yoon JB
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):9085-9093. PubMed ID: 29461033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of a Carbon Nanotube Network on a Microelectromechanical Switch for Ultralong Contact Lifetime.
    Jo E; Seo MH; Pyo S; Ko SD; Kwon DS; Choi J; Yoon JB; Kim J
    ACS Appl Mater Interfaces; 2019 May; 11(20):18617-18625. PubMed ID: 31018637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.