BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 23178778)

  • 1. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii.
    Cutler WG; Brewer RC; El-Kadi A; Hue NV; Niemeyer PG; Peard J; Ray C
    Sci Total Environ; 2013 Jan; 442():177-88. PubMed ID: 23178778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study.
    Datta R; Sarkar D; Sharma S; Sand K
    Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron amendments to reduce bioaccessible arsenic.
    Cutler WG; El-Kadi A; Hue NV; Peard J; Scheckel K; Ray C
    J Hazard Mater; 2014 Aug; 279():554-61. PubMed ID: 25113516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia.
    Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ
    Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic chemistry and remediation in Hawaiian soils.
    Hue NV
    Int J Phytoremediation; 2013; 15(2):105-16. PubMed ID: 23487989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of in vitro assay pH and extractant composition on As bioaccessibility in contaminated soils.
    Smith E; Scheckel K; Miller BW; Weber J; Juhasz AL
    Sci Total Environ; 2014 Mar; 473-474():171-7. PubMed ID: 24369295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccessibility of arsenic in soils developed over Jurassic ironstones in eastern England.
    Palumbo-Roe B; Cave MR; Klinck BA; Wragg J; Taylor H; O'Donnell KE; Shaw RA
    Environ Geochem Health; 2005 Apr; 27(2):121-30. PubMed ID: 16003580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils.
    Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R
    Chemosphere; 2007 Aug; 69(1):69-78. PubMed ID: 17532365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils.
    Smith E; Naidu R; Weber J; Juhasz AL
    Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of the oral arsenic bioaccessibility factor for characterising the risk associated with soil ingestion in a mining-influenced zone.
    Martínez-Sánchez MJ; Martínez-López S; Martínez-Martínez LB; Pérez-Sirvent C
    J Environ Manage; 2013 Feb; 116():10-7. PubMed ID: 23274587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments.
    Subacz JL; Barnett MO; Jardine PM; Stewart MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1317-29. PubMed ID: 17654151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites.
    Sarkar D; Makris KC; Parra-Noonan MT; Datta R
    Environ Int; 2007 Feb; 33(2):164-9. PubMed ID: 17034861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK.
    Wragg J; Cave M; Nathanail P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1303-15. PubMed ID: 17654150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate.
    Datta R; Makris KC; Sarkar D
    Arch Environ Contam Toxicol; 2007 May; 52(4):475-82. PubMed ID: 17387422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining.
    Ruiz-Chancho MJ; López-Sánchez JF; Rubio R
    Anal Bioanal Chem; 2007 Jan; 387(2):627-35. PubMed ID: 17171341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccessibility of arsenic in mine waste-contaminated soils: a case study from an abandoned arsenic mine in SW England (UK).
    Palumbo-Roe B; Klinck B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1251-61. PubMed ID: 17654145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.