BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 23178778)

  • 21. Adsorption, oxidation, and bioaccessibility of As(III) in soils.
    Yang JK; Barnett MO; Zhuang J; Fendorf SE; Jardine PM
    Environ Sci Technol; 2005 Sep; 39(18):7102-10. PubMed ID: 16201635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioaccessibility of lead in high carbonate soils.
    Denys S; Caboche J; Tack K; Delalain P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1331-9. PubMed ID: 17654152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of arsenic bioaccessibility in housedust and contaminated soils based on four in vitro assays.
    Li HB; Li J; Zhu YG; Juhasz AL; Ma LQ
    Sci Total Environ; 2015 Nov; 532():803-11. PubMed ID: 26136157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic in Playground Soils from Kindergartens and Green Recreational Areas of Bratislava City (Slovakia): Occurrence and Gastric Bioaccessibility.
    Hiller E; Filová L; Jurkovič Ľ; Lachká L; Kulikova T; Šimurková M
    Arch Environ Contam Toxicol; 2018 Oct; 75(3):402-414. PubMed ID: 29770841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioaccessible arsenic in the home environment in southwest England.
    Rieuwerts JS; Searle P; Buck R
    Sci Total Environ; 2006 Dec; 371(1-3):89-98. PubMed ID: 17023026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids.
    Denys S; Tack K; Caboche J; Delalain P
    Chemosphere; 2009 Feb; 74(5):711-6. PubMed ID: 19027930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils. Part-I: incubation study.
    Sarkar D; Datta R; Sharma S
    Chemosphere; 2005 Jul; 60(2):188-95. PubMed ID: 15914238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human health risk from arsenical pesticide contaminated soils: a long-term greenhouse study.
    Quazi S; Sarkar D; Datta R
    J Hazard Mater; 2013 Nov; 262():1031-8. PubMed ID: 23142055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils.
    Juhasz AL; Weber J; Smith E; Naidu R; Rees M; Rofe A; Kuchel T; Sansom L
    Environ Sci Technol; 2009 Dec; 43(24):9487-94. PubMed ID: 20000545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of the bioaccessible arsenic fraction in soils using near infrared spectroscopy.
    Cave M; Taylor H; Wragg J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1293-301. PubMed ID: 17654149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils: Method comparison and method development.
    Li J; Li K; Cui XY; Basta NT; Li LP; Li HB; Ma LQ
    Sci Total Environ; 2015 Nov; 532():812-20. PubMed ID: 26116410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic accumulation by edible aquatic macrophytes.
    Falinski KA; Yost RS; Sampaga E; Peard J
    Ecotoxicol Environ Saf; 2014 Jan; 99():74-81. PubMed ID: 24210365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of sugar cane vinasse on the sorption and degradation of herbicides in soil under controlled conditions.
    Lourencetti C; De Marchi MR; Ribeiro ML
    J Environ Sci Health B; 2012; 47(10):949-58. PubMed ID: 22938579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of dosing vehicle on arsenic bioaccessibility in smelter-contaminated soils.
    Basta NT; Foster JN; Dayton EA; Rodriguez RR; Casteel SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1275-81. PubMed ID: 17654147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh.
    Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD
    Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification of an existing in vitro method to predict relative bioavailable arsenic in soils.
    Whitacre S; Basta N; Stevens B; Hanley V; Anderson R; Scheckel K
    Chemosphere; 2017 Aug; 180():545-552. PubMed ID: 28432891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interconnected soil iron and arsenic speciation effects on arsenic bioaccessibility and bioavailability: a scoping review.
    Sowers TD; Nelson CM; Blackmon MD; Jerden ML; Kirby AM; Diamond GL; Bradham KD
    J Toxicol Environ Health B Crit Rev; 2022 Jan; 25(1):1-22. PubMed ID: 34706629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.