These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 2317887)

  • 1. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries.
    Asakura T; Karino T
    Circ Res; 1990 Apr; 66(4):1045-66. PubMed ID: 2317887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic structure of disturbed flows in the arterial and venous systems, and its implication in the localization of vascular diseases.
    Karino T
    Int Angiol; 1986; 5(4):297-313. PubMed ID: 3585099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - II. Abdominal aorta.
    Endo S; Goldsmith HL; Karino T
    Biorheology; 2014; 51(4-5):257-74. PubMed ID: 25281597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - I. Aortic arch.
    Endo S; Goldsmith HL; Karino T
    Biorheology; 2014; 51(4-5):239-55. PubMed ID: 25281595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow and atherosclerosis in coronary bifurcations.
    Giannoglou GD; Antoniadis AP; Koskinas KC; Chatzizisis YS
    EuroIntervention; 2010 Dec; 6 Suppl J():J16-23. PubMed ID: 21930484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood flow patterns in the proximal human coronary arteries: relationship to atherosclerotic plaque occurrence.
    Suo J; Oshinski JN; Giddens DP
    Mol Cell Biomech; 2008 Mar; 5(1):9-18. PubMed ID: 18524242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow patterns and distributions of fluid velocity and wall shear stress in the human internal carotid and middle cerebral arteries.
    Takeuchi S; Karino T
    World Neurosurg; 2010 Mar; 73(3):174-85; discussion e27. PubMed ID: 20860955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow patterns in dog aortic arch under a steady flow condition simulating mid-systole.
    Endo S; Sohara Y; Karino T
    Heart Vessels; 1996; 11(4):180-91. PubMed ID: 9119807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
    Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI.
    Ohayon J; Gharib AM; Garcia A; Heroux J; Yazdani SK; Malvè M; Tracqui P; Martinez MA; Doblare M; Finet G; Pettigrew RI
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1097-106. PubMed ID: 21685261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human hemodynamic and dimensional variables.
    Lee BK; Kwon HM; Kim D; Yoon YW; Seo JK; Kim IJ; Roh HW; Suh SH; Yoo SS; Kim HS
    Yonsei Med J; 1998 Apr; 39(2):166-74. PubMed ID: 9587258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation.
    Nakazawa G; Yazdani SK; Finn AV; Vorpahl M; Kolodgie FD; Virmani R
    J Am Coll Cardiol; 2010 Apr; 55(16):1679-87. PubMed ID: 20394871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis.
    Feldman CL; Ilegbusi OJ; Hu Z; Nesto R; Waxman S; Stone PH
    Am Heart J; 2002 Jun; 143(6):931-9. PubMed ID: 12075241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries.
    Rikhtegar F; Knight JA; Olgac U; Saur SC; Poulikakos D; Marshall W; Cattin PC; Alkadhi H; Kurtcuoglu V
    Atherosclerosis; 2012 Apr; 221(2):432-7. PubMed ID: 22317967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of the composition and spatial disposition of atherosclerotic plaques localized in epicardial coronary artery bifurcations in adults].
    da Silva MJ; Higuchi ML; Gutierrez PS; Arie S; Garcia DP; Lopes EA; Bellotti G; Pillegi F
    Arq Bras Cardiol; 1993 Aug; 61(2):73-7. PubMed ID: 8297224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of Atherosclerotic Plaques in Different Vascular Territories: Clinical Relevance.
    Poredos P; Poredos P; Jezovnik MK
    Curr Vasc Pharmacol; 2018 Jan; 16(2):125-129. PubMed ID: 28245772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical and functional characteristics of ectatic coronary arteries. An intracoronary ultrasound study.
    Triantafyllidi H; Vavouranakis M; Arvaniti C; Stefanadis C; Toutouzas P
    Acta Cardiol; 2004 Apr; 59(2):153-8. PubMed ID: 15139656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsatile flow in the human left coronary artery bifurcation: average conditions.
    He X; Ku DN
    J Biomech Eng; 1996 Feb; 118(1):74-82. PubMed ID: 8833077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical study of flow in curved tubes simulating coronary arteries.
    Chang LJ; Tarbell JM
    J Biomech; 1988; 21(11):927-37. PubMed ID: 3253279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of local flow haemodynamics on atherosclerosis in coronary artery bifurcations.
    Antoniadis AP; Giannopoulos AA; Wentzel JJ; Joner M; Giannoglou GD; Virmani R; Chatzizisis YS
    EuroIntervention; 2015; 11 Suppl V():V18-22. PubMed ID: 25983161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.