These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 23178875)
21. Proteomic analysis of strawberry achenes reveals active synthesis and recycling of L-ascorbic acid. Aragüez I; Cruz-Rus E; Botella MÁ; Medina-Escobar N; Valpuesta V J Proteomics; 2013 May; 83():160-79. PubMed ID: 23545168 [TBL] [Abstract][Full Text] [Related]
22. Proteomic and metabolomic study of wax apple (Syzygium samarangense) fruit during ripening process. Jamil NAM; Rahmad N; Rosli NHM; Al-Obaidi JR Electrophoresis; 2018 Dec; 39(23):2954-2964. PubMed ID: 30074628 [TBL] [Abstract][Full Text] [Related]
23. Changes in the proteomics and metabolomics profiles of Cormus Domestica (L.) fruits during the ripening process. Tartaglia M; Zuzolo D; Prigioniero A; Ranauda MA; Scarano P; Tienda-Parrilla M; Hernandez-Lao T; Jorrín-Novo J; Guarino C BMC Plant Biol; 2024 Oct; 24(1):945. PubMed ID: 39390371 [TBL] [Abstract][Full Text] [Related]
24. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Torrigiani P; Bressanin D; Ruiz KB; Tadiello A; Trainotti L; Bonghi C; Ziosi V; Costa G Physiol Plant; 2012 Sep; 146(1):86-98. PubMed ID: 22409726 [TBL] [Abstract][Full Text] [Related]
25. Metabolite and proteome changes during the ripening of Syrah and Cabernet Sauvignon grape varieties cultured in a nontraditional wine region in Brazil. Fraige K; González-Fernández R; Carrilho E; Jorrín-Novo JV J Proteomics; 2015 Jan; 113():206-25. PubMed ID: 25301534 [TBL] [Abstract][Full Text] [Related]
26. Proteome analysis of grape skins during ripening. Deytieux C; Geny L; Lapaillerie D; Claverol S; Bonneu M; Donèche B J Exp Bot; 2007; 58(7):1851-62. PubMed ID: 17426054 [TBL] [Abstract][Full Text] [Related]
27. A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development. Lee JM; Kim S; Lee JY; Yoo EY; Cho MC; Cho MR; Kim BD; Bahk YY Proteomics; 2006 Oct; 6(19):5248-59. PubMed ID: 16947123 [TBL] [Abstract][Full Text] [Related]
28. Differential expression of proteins associated with seasonal bud dormancy at four critical stages in Japanese apricot. Zhuang WB; Shi T; Gao ZH; Zhang Z; Zhang JY Plant Biol (Stuttg); 2013 Jan; 15(1):233-42. PubMed ID: 22672637 [TBL] [Abstract][Full Text] [Related]
29. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Chaki M; Álvarez de Morales P; Ruiz C; Begara-Morales JC; Barroso JB; Corpas FJ; Palma JM Ann Bot; 2015 Sep; 116(4):637-47. PubMed ID: 25814060 [TBL] [Abstract][Full Text] [Related]
30. Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening. Xi W; Zheng H; Zhang Q; Li W Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27347931 [TBL] [Abstract][Full Text] [Related]
31. Monitoring Apricot ( García-Gómez BE; Salazar JA; Egea JA; Rubio M; Martínez-Gómez P; Ruiz D Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562966 [TBL] [Abstract][Full Text] [Related]
32. Proteomic analysis of papaya fruit ripening using 2DE-DIGE. Nogueira SB; Labate CA; Gozzo FC; Pilau EJ; Lajolo FM; Oliveira do Nascimento JR J Proteomics; 2012 Feb; 75(4):1428-39. PubMed ID: 22134357 [TBL] [Abstract][Full Text] [Related]
33. Proteomic analysis of up-accumulated proteins associated with fruit quality during autumn olive (Elaeagnus umbellata) fruit ripening. Wu MC; Hu HT; Yang L; Yang L J Agric Food Chem; 2011 Jan; 59(2):577-83. PubMed ID: 21175188 [TBL] [Abstract][Full Text] [Related]
34. Non-climacteric ripening and sorbitol homeostasis in plum fruits. Kim HY; Farcuh M; Cohen Y; Crisosto C; Sadka A; Blumwald E Plant Sci; 2015 Feb; 231():30-9. PubMed ID: 25575989 [TBL] [Abstract][Full Text] [Related]
35. Proteomic analysis of peach endocarp and mesocarp during early fruit development. Hu H; Liu Y; Shi GL; Liu YP; Wu RJ; Yang AZ; Wang YM; Hua BG; Wang YN Physiol Plant; 2011 Aug; 142(4):390-406. PubMed ID: 21496031 [TBL] [Abstract][Full Text] [Related]
36. Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes. Bianco L; Lopez L; Scalone AG; Di Carli M; Desiderio A; Benvenuto E; Perrotta G J Proteomics; 2009 May; 72(4):586-607. PubMed ID: 19135558 [TBL] [Abstract][Full Text] [Related]
37. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. Palma JM; Corpas FJ; del Río LA J Proteomics; 2011 Aug; 74(8):1230-43. PubMed ID: 21524723 [TBL] [Abstract][Full Text] [Related]
38. Proteomic analysis of the oil palm fruit mesocarp reveals elevated oxidative phosphorylation activity is critical for increased storage oil production. Loei H; Lim J; Tan M; Lim TK; Lin QS; Chew FT; Kulaveerasingam H; Chung MC J Proteome Res; 2013 Nov; 12(11):5096-109. PubMed ID: 24083564 [TBL] [Abstract][Full Text] [Related]
39. Microarray analysis of differentially expressed genes engaged in fruit development between Prunus mume and Prunus armeniaca. Li X; Korir NK; Liu L; Shangguan L; Wang Y; Han J; Chen M; Fang J J Plant Physiol; 2012 Nov; 169(17):1776-88. PubMed ID: 23036314 [TBL] [Abstract][Full Text] [Related]
40. BTH treatment caused physiological, biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. Li X; Bi Y; Wang J; Dong B; Li H; Gong D; Zhao Y; Tang Y; Yu X; Shang Q J Proteomics; 2015 Apr; 120():179-93. PubMed ID: 25779462 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]