These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 23178927)

  • 1. Detecting single photons: a supramolecular matter?
    Cangiano L; Dell'Orco D
    FEBS Lett; 2013 Jan; 587(1):1-4. PubMed ID: 23178927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic scaffolding mechanism for rhodopsin and transducin interaction in vertebrate vision.
    Dell'Orco D; Koch KW
    Biochem J; 2011 Dec; 440(2):263-71. PubMed ID: 21843151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
    Dell'Orco D
    FEBS Lett; 2013 Jun; 587(13):2060-6. PubMed ID: 23684654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligomeric state of rhodopsin within rhodopsin-transducin complex probed with succinylated concanavalin A.
    Jastrzebska B
    Methods Mol Biol; 2015; 1271():221-33. PubMed ID: 25697527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing rhodopsin-transducin interactions by surface modification and mass spectrometry.
    Wang X; Kim SH; Ablonczy Z; Crouch RK; Knapp DR
    Biochemistry; 2004 Sep; 43(35):11153-62. PubMed ID: 15366925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction network of rhodopsin involving the heterotrimeric G-protein transducin and the monomeric GTPase Rac1 is determined by distinct binding processes.
    Köster M; Dell'Orco D; Koch KW
    FEBS J; 2014 Dec; 281(23):5175-85. PubMed ID: 25243418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms regulating variability of the single photon responses of mammalian rod photoreceptors.
    Field GD; Rieke F
    Neuron; 2002 Aug; 35(4):733-47. PubMed ID: 12194872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the molecular interaction of the farnesyl moiety of transducin through the use of a photoreactive farnesyl analogue.
    Hagiwara K; Wada A; Katadae M; Ito M; Ohya Y; Casey PJ; Fukada Y
    Biochemistry; 2004 Jan; 43(2):300-9. PubMed ID: 14717583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception.
    Reingruber J; Holcman D; Fain GL
    Bioessays; 2015 Nov; 37(11):1243-52. PubMed ID: 26354340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity of transducin for photoactivated rhodopsin: dependence on nucleotide binding state.
    Clack JW
    BMB Rep; 2008 Jul; 41(7):548-53. PubMed ID: 18682040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of transducin to light-activated rhodopsin prevents transducin interaction with the rod cGMP phosphodiesterase gamma-subunit.
    Artemyev NO
    Biochemistry; 1997 Apr; 36(14):4188-93. PubMed ID: 9100013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes.
    Morizumi T; Imai H; Shichida Y
    Biochemistry; 2005 Jul; 44(29):9936-43. PubMed ID: 16026166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors.
    Becirovic E; Nguyen ON; Paparizos C; Butz ES; Stern-Schneider G; Wolfrum U; Hauck SM; Ueffing M; Wahl-Schott C; Michalakis S; Biel M
    Hum Mol Genet; 2014 Nov; 23(22):5989-97. PubMed ID: 24963162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.
    Gunkel M; Schöneberg J; Alkhaldi W; Irsen S; Noé F; Kaupp UB; Al-Amoudi A
    Structure; 2015 Apr; 23(4):628-38. PubMed ID: 25728926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis of GTP-binding protein interaction with receptors.
    Hamm HE; Rarick H; Mazzoni M; Malinski J; Suh KH
    Biochem Soc Symp; 1990; 56():35-44. PubMed ID: 2256961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes.
    Buzhynskyy N; Salesse C; Scheuring S
    J Mol Recognit; 2011; 24(3):483-9. PubMed ID: 21504027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S; Palczewski K; Hofmann KP
    Biochemistry; 1996 Mar; 35(9):2901-8. PubMed ID: 8608127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of opsin activity by all-trans-retinal.
    Surya A; Knox BE
    Exp Eye Res; 1998 May; 66(5):599-603. PubMed ID: 9628807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phototransduction in mouse rods and cones.
    Fu Y; Yau KW
    Pflugers Arch; 2007 Aug; 454(5):805-19. PubMed ID: 17226052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.