These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23179014)

  • 1. A model for the onset of oscillations near the stopping angle in an inclined granular flow.
    Tan D; Richard P; Jenkins JT
    Eur Phys J E Soft Matter; 2012 Nov; 35(11):122. PubMed ID: 23179014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology.
    Mandal S; Khakhar DV
    Phys Rev E; 2017 Nov; 96(5-1):050901. PubMed ID: 29347677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a theoretical picture of dense granular flows down inclines.
    Delannay R; Louge M; Richard P; Taberlet N; Valance A
    Nat Mater; 2007 Feb; 6(2):99-108. PubMed ID: 17268496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frictional-collisional regime for granular suspension flows down an inclined channel.
    Ancey C; Evesque P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8349-60. PubMed ID: 11138134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance of numerical simulations to booming sand.
    Richard P; McNamara S; Tankeo M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010301. PubMed ID: 22400502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady flow of smooth, inelastic particles on a bumpy inclined plane: hard and soft particle simulations.
    Tripathi A; Khakhar DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041307. PubMed ID: 20481717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model for dense granular flows down bumpy inclines.
    Louge MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061303. PubMed ID: 16241217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-diffusion scalings in dense granular flows.
    Artoni R; Larcher M; Jenkins JT; Richard P
    Soft Matter; 2021 Mar; 17(9):2596-2602. PubMed ID: 33523071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis in a hydrodynamic model of dense granular flows.
    Artoni R; Santomaso A; Canu P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051304. PubMed ID: 21728522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of particle stiffness on contact dynamics and rheology in a dense granular flow.
    Bharathraj S; Kumaran V
    Phys Rev E; 2018 Jan; 97(1-1):012902. PubMed ID: 29448432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive relations for steady, dense granular flows.
    Berzi D; di Prisco CG; Vescovi D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031301. PubMed ID: 22060355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices.
    Brodu N; Richard P; Delannay R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022202. PubMed ID: 23496500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular flows on a dissipative base.
    Louge MY; Valance A; Lancelot P; Delannay R; Artières O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022204. PubMed ID: 26382391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns in flowing sand: understanding the physics of granular flow.
    Börzsönyi T; Ecke RE; McElwaine JN
    Phys Rev Lett; 2009 Oct; 103(17):178302. PubMed ID: 19905786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frictional dependence of shallow-granular flows from discrete particle simulations.
    Thornton AR; Weinhart T; Luding S; Bokhove O
    Eur Phys J E Soft Matter; 2012 Dec; 35(12):9804. PubMed ID: 23224112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granular Leidenfrost effect in vibrated beds with bumpy surfaces.
    Lim EW
    Eur Phys J E Soft Matter; 2010 Aug; 32(4):365-75. PubMed ID: 20820844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-diffusion in inhomogeneous granular shearing flows.
    Artoni R; Richard P; Larcher M; Jenkins JT
    Phys Rev E; 2022 Sep; 106(3):L032901. PubMed ID: 36266863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittency of rheological regimes in uniform liquid-granular flows.
    Armanini A; Larcher M; Fraccarollo L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051306. PubMed ID: 19518448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inelastic collisional effect on a dilute granular shock layer with a heated wall.
    Yano R; Suzuki K
    Eur Phys J E Soft Matter; 2011 Mar; 34(3):31. PubMed ID: 21437794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical fluctuations in dense granular flows.
    Gardel E; Sitaridou E; Facto K; Keene E; Hattam K; Easwar N; Menon N
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1909):5109-21. PubMed ID: 19933130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.