BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23179269)

  • 1. The biochemical effect of Ser166 phosphorylation on Euplotes octocarinatus centrin.
    Zhao YQ; Yan J; Chao JB; Liang AH; Yang BS
    J Biol Inorg Chem; 2013 Jan; 18(1):123-36. PubMed ID: 23179269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of lanthanide-induced conformational change of the C-terminal domain on centrin.
    Zhao YQ; Yan J; Song L; Feng YN; Liang AH; Yang BS
    J Fluoresc; 2012 Jan; 22(1):485-94. PubMed ID: 21947611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the role of Mg²⁺ on conformational change and target recognition by ciliate Euplotes octocarinatus centrin.
    Zhao Y; Yan J; Feng Y; Liang A; Yang B
    J Photochem Photobiol B; 2011 Oct; 105(1):60-8. PubMed ID: 21788140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction between lanthanide (III) and N-terminal domain of Euplotes octocarinatus centrin.
    Zhao Y; Yan J; Song L; Feng Y; Liang A; Yang B
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 87():163-70. PubMed ID: 22154266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of four conserved aspartic acid residues of EF-loops in the metal ion binding and in the self-assembly of ciliate Euplotes octocarinatus centrin.
    Liu W; Duan L; Sun T; Yang B
    Biometals; 2016 Dec; 29(6):1047-1058. PubMed ID: 27743149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation effect of double strand DNA on the self-assembly of N-terminal domain of Euplotes octocarinatus centrin.
    Zhang W; Shi E; Zhao Y; Yang B
    J Inorg Biochem; 2018 Mar; 180():15-25. PubMed ID: 29223826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of XPC peptide on binding Tb
    Shi E; Zhang W; Zhao Y; Yang B
    Metallomics; 2017 Dec; 9(12):1796-1808. PubMed ID: 29114686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lutetium(III)-dependent self-assembly study of ciliate Euplotes octocarinatus centrin.
    Duan L; Zhao YQ; Wang ZJ; Li GT; Liang AH; Yang BS
    J Inorg Biochem; 2008 Feb; 102(2):268-77. PubMed ID: 17935787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical role of tyrosine 79 in the fluorescence resonance energy transfer and terbium(III)-dependent self-assembly of ciliate Euplotes octocarinatus centrin.
    Duan L; Liu W; Wang ZJ; Liang AH; Yang BS
    J Biol Inorg Chem; 2010 Sep; 15(7):995-1007. PubMed ID: 20429020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of self-assembly of Euplotes octocarinatus centrin.
    Zhao Y; Song L; Liang A; Yang B
    J Photochem Photobiol B; 2009 Apr; 95(1):26-32. PubMed ID: 19162505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effect of melittin on endonuclease-like activity of centrin.
    Zhang W; Shi E; Zhao Y; Yang B
    J Inorg Biochem; 2018 Sep; 186():280-293. PubMed ID: 29990752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of melittin binding to Euplotes octocarinatus centrin.
    Zhao Y; Feng J; Wang Z; Liang A; Yang B
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):884-7. PubMed ID: 18054274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the trimeric N-terminal domain of ciliate Euplotes octocarinatus centrin binding with calcium ions.
    Wang W; Zhao Y; Wang H; Yang B
    Protein Sci; 2018 Jun; 27(6):1102-1108. PubMed ID: 29607555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The characterization for the binding of calcium and terbium to Euplotes octocarinatus centrin.
    Yaqin Z; Jiuying F; Aihua L; Binsheng Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1756-61. PubMed ID: 18757233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spectral studies on the effect of Glu 101 to the metal binding characteristic of Euplotes octocarinatus centrin.
    Li G; Wang Z; Zhao Y; Ren L; Liang A; Yang B
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1189-93. PubMed ID: 17126067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N‑(6‑Aminohexyl)‑5‑chloro‑1‑naphthalenesulfonamide, a centrin antagonist, inhibits Tb
    Li M; Zhang W; Yang B
    J Inorg Biochem; 2019 Apr; 193():15-24. PubMed ID: 30660047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mode of action of centrin. Binding of Ca2+ and a peptide fragment of Kar1p to the C-terminal domain.
    Hu H; Sheehan JH; Chazin WJ
    J Biol Chem; 2004 Dec; 279(49):50895-903. PubMed ID: 15452116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium and phosphorylation double-regulating caltractin initiating target protein XPC function.
    Zhao Y; Yang J; Chao J; Yang B
    Int J Biol Macromol; 2019 Sep; 136():503-511. PubMed ID: 31202846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary x-ray crystallographic analysis of centrin from ciliate Euplotes octocarinatus.
    He XJ; Li L; Hou H; Zhao Y; Liang A; Rao Z
    Protein Pept Lett; 2005 Aug; 12(6):609-11. PubMed ID: 16101404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acidic ribosomal protein P2 from Euplotes octocarinatus is phosphorylated at its N-terminal domain.
    Hu M; Li L; Chao J; Zhao Y; Zhang Z; Liang A
    Biochem Cell Biol; 2014 Feb; 92(1):23-32. PubMed ID: 24471915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.