These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 23179617)

  • 1. Surface charge engineering of a Bacillus gibsonii subtilisin protease.
    Jakob F; Martinez R; Mandawe J; Hellmuth H; Siegert P; Maurer KH; Schwaneberg U
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6793-802. PubMed ID: 23179617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution.
    Martinez R; Jakob F; Tu R; Siegert P; Maurer KH; Schwaneberg U
    Biotechnol Bioeng; 2013 Mar; 110(3):711-20. PubMed ID: 23097081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis.
    Jaouadi B; Aghajari N; Haser R; Bejar S
    Biochimie; 2010 Apr; 92(4):360-9. PubMed ID: 20096326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP
    Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced stability of subtilisin by three point mutations.
    Narhi LO; Stabinsky Y; Levitt M; Miller L; Sachdev R; Finley S; Park S; Kolvenbach C; Arakawa T; Zukowski M
    Biotechnol Appl Biochem; 1991 Feb; 13(1):12-24. PubMed ID: 2054102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein engineering on subtilisin E.
    Zhu L; Ji Y
    Chin J Biotechnol; 1997; 13(1):9-15. PubMed ID: 9376509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous chemical reversion of an active site mutation: deamidation of an asparagine residue replacing the catalytic aspartic acid of glutamate dehydrogenase.
    Paradisi F; Dean JL; Geoghegan KF; Engel PC
    Biochemistry; 2005 Mar; 44(9):3636-43. PubMed ID: 15736973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of the pH optimum of Bacillus cereus beta-amylase: conversion of the pH optimum from a bacterial type to a higher-plant type.
    Hirata A; Adachi M; Utsumi S; Mikami B
    Biochemistry; 2004 Oct; 43(39):12523-31. PubMed ID: 15449941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reengineering of subtilisin Carlsberg for oxidative resistance.
    Vojcic L; Despotovic D; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U
    Biol Chem; 2013 Jan; 394(1):79-87. PubMed ID: 23096572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and structural characterization of a surfactant-stable high-alkaline protease AprB with a novel structural feature unique to subtilisin family.
    Deng A; Wu J; Zhang G; Wen T
    Biochimie; 2011 Apr; 93(4):783-91. PubMed ID: 21281692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.
    Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C
    J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteases of enhanced stability: characterization of a thermostable variant of subtilisin.
    Bryan PN; Rollence ML; Pantoliano MW; Wood J; Finzel BC; Gilliland GL; Howard AJ; Poulos TL
    Proteins; 1986 Dec; 1(4):326-34. PubMed ID: 3329733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights on activity and stability of subtilisin E towards guanidinium chloride and sodium dodecylsulfate.
    Li Z; Roccatano D; Lorenz M; Martinez R; Schwaneberg U
    J Biotechnol; 2014 Jan; 169():87-94. PubMed ID: 24280236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of natural variants and genetically engineered intermediates of Bacillus lentus alkaline proteases.
    Maurer KH; Markgraf M; Goddette D
    Adv Exp Med Biol; 1996; 379():243-56. PubMed ID: 8796329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins.
    Mulder FA; Schipper D; Bott R; Boelens R
    J Mol Biol; 1999 Sep; 292(1):111-23. PubMed ID: 10493861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering thermostability in subtilisin BPN' by in vitro mutagenesis.
    Rollence ML; Filpula D; Pantoliano MW; Bryan PN
    Crit Rev Biotechnol; 1988; 8(3):217-24. PubMed ID: 3145814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered Bacillus lentus subtilisins having altered flexibility.
    Graycar T; Knapp M; Ganshaw G; Dauberman J; Bott R
    J Mol Biol; 1999 Sep; 292(1):97-109. PubMed ID: 10493860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the role of asparagine mutation in thermostability of Bacillus KR-8104 α-amylase.
    Rahimzadeh M; Khajeh K; Mirshahi M; Khayatian M; Schwarzenbacher R
    Int J Biol Macromol; 2012 May; 50(4):1175-82. PubMed ID: 22126991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.