These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 23179768)
21. Quantum study of boron nitride nanotubes functionalized with anticancer molecules. Duverger E; Gharbi T; Delabrousse E; Picaud F Phys Chem Chem Phys; 2014 Sep; 16(34):18425-32. PubMed ID: 25070038 [TBL] [Abstract][Full Text] [Related]
22. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Mukhopadhyay S; Gowtham S; Scheicher RH; Pandey R; Karna SP Nanotechnology; 2010 Apr; 21(16):165703. PubMed ID: 20351402 [TBL] [Abstract][Full Text] [Related]
23. Density Functional Theory-Based Studies Predict Carbon Nanotubes as Effective Mycolactone Inhibitors. Suleiman N; Yaya A; Wilson MD; Aryee S; Kwofie SK Molecules; 2022 Jul; 27(14):. PubMed ID: 35889312 [TBL] [Abstract][Full Text] [Related]
24. Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes. Liu H; Turner CH Phys Chem Chem Phys; 2014 Nov; 16(41):22853-60. PubMed ID: 25242148 [TBL] [Abstract][Full Text] [Related]
25. DFT study of the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin on pristine and Ni-doped boron nitride nanotubes. Wang R; Zhang D; Liu C Chemosphere; 2017 Feb; 168():18-24. PubMed ID: 27776234 [TBL] [Abstract][Full Text] [Related]
26. First-principles simulations of the chemical functionalization of (5,5) boron nitride nanotubes. Chigo Anota E; Cocoletzi GH J Mol Model; 2013 Jun; 19(6):2335-41. PubMed ID: 23397070 [TBL] [Abstract][Full Text] [Related]
27. Comparative Study of Phosgene Gas Sensing Using Carbon and Boron Nitride Nanomaterials-A DFT Approach. Kweitsu EO; Armoo SK; Kan-Dapaah K; Abavare EKK; Dodoo-Arhin D; Yaya A Molecules; 2020 Dec; 26(1):. PubMed ID: 33383916 [TBL] [Abstract][Full Text] [Related]
28. Achieving Boron-Carbon-Nitrogen Heterostructures by Collision Fusion of Carbon Nanotubes and Boron Nitride Nanotubes. Zhang C; Xu J; Song H; Ren K; Yu ZG; Zhang YW Molecules; 2023 May; 28(11):. PubMed ID: 37298810 [TBL] [Abstract][Full Text] [Related]
29. Quantum DFT methods to explore the interaction of 1-Adamantylamine with pristine, and P, As, Al, and Ga doped BN nanotubes. Nemati-Kande E; Pourasadi A; Aghababaei F; Baranipour S; Mehdizadeh A; Sardroodi JJ Sci Rep; 2022 Nov; 12(1):19972. PubMed ID: 36402905 [TBL] [Abstract][Full Text] [Related]
30. Density functional theory investigation to surface modification of boron nitride nanotubes. Rajhi AA; Alamri S J Mol Model; 2022 Jan; 28(2):50. PubMed ID: 35102455 [TBL] [Abstract][Full Text] [Related]
32. Adsorption of carbon dioxide and ammonia in transition metal-doped boron nitride nanotubes. Lima KAL; Cunha WFD; Monteiro FF; Enders BG; Jr MLP; Jr LAR J Mol Model; 2019 Nov; 25(12):359. PubMed ID: 31773288 [TBL] [Abstract][Full Text] [Related]
33. Hormones Nanofiltration in Carbon Nanotubes and Boron Nitride Nanotubes Using Uniform External Electric Field Through Molecular Dynamics. Dos Santos Cavaleiro RM; da Silva Arouche T; Martins Tanoue PS; Sá Pereira TS; de Carvalho Junior RN; Paranhos Costa FL; de Andrade Filho TS; Dos Santos Borges R; de Jesus Chaves Neto AM J Nanosci Nanotechnol; 2021 Nov; 21(11):5499-5509. PubMed ID: 33980360 [TBL] [Abstract][Full Text] [Related]
35. Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes. Zhao Y; Wu X; Yang J; Zeng XC Phys Chem Chem Phys; 2011 Jun; 13(24):11766-72. PubMed ID: 21603684 [TBL] [Abstract][Full Text] [Related]
36. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations. Du A; Chen Y; Zhu Z; Lu G; Smith SC J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268 [TBL] [Abstract][Full Text] [Related]
37. Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices. Raissi H; Mollania F Eur J Pharm Sci; 2014 Jun; 56():37-54. PubMed ID: 24566615 [TBL] [Abstract][Full Text] [Related]
38. Water phase transition induced by a Stone-Wales defect in a boron nitride nanotube. Won CY; Aluru NR J Am Chem Soc; 2008 Oct; 130(41):13649-52. PubMed ID: 18803384 [TBL] [Abstract][Full Text] [Related]
39. Comparative study of the efficiency of silicon carbide, boron nitride and carbon nanotube to deliver cancerous drug, azacitidine: A DFT study. Baildya N; Mazumdar S; Mridha NK; Chattopadhyay AP; Khan AA; Dutta T; Mandal M; Chowdhury SK; Reza R; Ghosh NN Comput Biol Med; 2023 Mar; 154():106593. PubMed ID: 36746115 [TBL] [Abstract][Full Text] [Related]
40. Dopamine and Caffeine Encapsulation within Boron Nitride (14,0) Nanotubes: Classical Molecular Dynamics and First Principles Calculations. García-Toral D; González-Melchor M; Rivas-Silva JF; Meneses-Juárez E; Cano-Ordaz J; H Cocoletzi G J Phys Chem B; 2018 Jun; 122(22):5885-5896. PubMed ID: 29761705 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]