These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23180309)

  • 1. Staphylococcus aureus enterotoxins A- and B: binding to the enterocyte brush border and uptake by perturbation of the apical endocytic membrane traffic.
    Danielsen EM; Hansen GH; Karlsdóttir E
    Histochem Cell Biol; 2013 Apr; 139(4):513-24. PubMed ID: 23180309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.
    Danielsen EM; Hansen GH
    PLoS One; 2013; 8(10):e76661. PubMed ID: 24124585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytic trafficking from the small intestinal brush border probed with FM dye.
    Hansen GH; Rasmussen K; Niels-Christiansen LL; Danielsen EM
    Am J Physiol Gastrointest Liver Physiol; 2009 Oct; 297(4):G708-15. PubMed ID: 19679822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycol chitosan: A stabilizer of lipid rafts in the intestinal brush border.
    Danielsen ET; Danielsen EM
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):360-367. PubMed ID: 28034633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small molecule pinocytosis and clathrin-dependent endocytosis at the intestinal brush border: Two separate pathways into the enterocyte.
    Michael Danielsen E; Hansen GH
    Biochim Biophys Acta; 2016 Feb; 1858(2):233-43. PubMed ID: 26615917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism.
    Hansen GH; Dalskov SM; Rasmussen CR; Immerdal L; Niels-Christiansen LL; Danielsen EM
    Biochemistry; 2005 Jan; 44(3):873-82. PubMed ID: 15654743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes.
    Hansen GH; Pedersen J; Niels-Christiansen LL; Immerdal L; Danielsen EM
    Biochem J; 2003 Jul; 373(Pt 1):125-32. PubMed ID: 12689332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface.
    Danielsen EM
    Histochem Cell Biol; 2015 May; 143(5):545-56. PubMed ID: 25526697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of cell-penetrating peptides (CPPs) melittin and Hiv-1 Tat on the enterocyte brush border using a mucosal explant system.
    Danielsen EM; Hansen GH
    Biochim Biophys Acta Biomembr; 2018 Aug; 1860(8):1589-1599. PubMed ID: 29856994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane.
    Hansen GH; Rasmussen K; Niels-Christiansen LL; Danielsen EM
    Mol Membr Biol; 2011 Feb; 28(2):136-44. PubMed ID: 21166483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system.
    Danielsen EM; Hansen GH
    Tissue Barriers; 2017 Jul; 5(3):e1361900. PubMed ID: 28837408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of apparent L-amino acid diffusion in porcine jejunal enterocyte brush border membrane vesicles.
    Fan MZ; Adeola ; Asem EK
    Physiol Res; 2001; 50(4):373-81. PubMed ID: 11551143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a transcytosis epitope on staphylococcal enterotoxins.
    Shupp JW; Jett M; Pontzer CH
    Infect Immun; 2002 Apr; 70(4):2178-86. PubMed ID: 11895985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IgG trafficking in the adult pig small intestine: one- or bidirectional transfer across the enterocyte brush border?
    Möller R; Hansen GH; Danielsen EM
    Histochem Cell Biol; 2017 Mar; 147(3):399-411. PubMed ID: 27646280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcytosis of staphylococcal superantigen toxins.
    Hamad AR; Marrack P; Kappler JW
    J Exp Med; 1997 Apr; 185(8):1447-54. PubMed ID: 9126925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TNFAIP3 facilitates degradation of microbial antigen SEB in enterocytes.
    Chen C; Yang G; Geng XR; Wang X; Liu Z; Yang PC
    PLoS One; 2012; 7(9):e45941. PubMed ID: 23029332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid raft organization and function in brush borders of epithelial cells.
    Danielsen EM; Hansen GH
    Mol Membr Biol; 2006; 23(1):71-9. PubMed ID: 16611582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin Ia is required for CFTR brush border membrane trafficking and ion transport in the mouse small intestine.
    Kravtsov DV; Caputo C; Collaco A; Hoekstra N; Egan ME; Mooseker MS; Ameen NA
    Traffic; 2012 Aug; 13(8):1072-82. PubMed ID: 22510086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-glycosyl antibodies in lipid rafts of the enterocyte brush border: a possible host defense against pathogens.
    Hansen GH; Pedersen ED; Immerdal L; Niels-Christiansen LL; Danielsen EM
    Am J Physiol Gastrointest Liver Physiol; 2005 Dec; 289(6):G1100-7. PubMed ID: 16081758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profilin-Mediated Actin Allocation Regulates the Growth of Epithelial Microvilli.
    Faust JJ; Millis BA; Tyska MJ
    Curr Biol; 2019 Oct; 29(20):3457-3465.e3. PubMed ID: 31607529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.