These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 23180619)
1. Cellular reprogramming and cancer development. Semi K; Matsuda Y; Ohnishi K; Yamada Y Int J Cancer; 2013 Mar; 132(6):1240-8. PubMed ID: 23180619 [TBL] [Abstract][Full Text] [Related]
2. Induced pluripotent stem cell technology for dissecting the cancer epigenome. Semi K; Yamada Y Cancer Sci; 2015 Oct; 106(10):1251-6. PubMed ID: 26224327 [TBL] [Abstract][Full Text] [Related]
3. Application of iPS cell technology to cancer epigenome study: uncovering the mechanism of cell status conversion for drug resistance in tumor. Matsuda Y; Semi K; Yamada Y Pathol Int; 2014 Jul; 64(7):299-308. PubMed ID: 25047500 [TBL] [Abstract][Full Text] [Related]
4. [Application of reprogramming technology for cancer research]. Yagi M; Semi K; Yamada Y Nihon Rinsho; 2015 May; 73(5):751-5. PubMed ID: 25985626 [TBL] [Abstract][Full Text] [Related]
5. Unveiling epigenetic regulation in cancer, aging, and rejuvenation with in vivo reprogramming technology. Sogabe Y; Seno H; Yamamoto T; Yamada Y Cancer Sci; 2018 Sep; 109(9):2641-2650. PubMed ID: 29989289 [TBL] [Abstract][Full Text] [Related]
6. The causal relationship between epigenetic abnormality and cancer development: in vivo reprogramming and its future application. Yamada Y; Yamada Y Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(6):235-247. PubMed ID: 29887568 [TBL] [Abstract][Full Text] [Related]
7. Epigenetic aberrations in human pluripotent stem cells. Bar S; Benvenisty N EMBO J; 2019 Jun; 38(12):. PubMed ID: 31088843 [TBL] [Abstract][Full Text] [Related]
8. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling? Yilmazer A; de Lázaro I; Taheri H Cancer Lett; 2015 Dec; 369(1):1-8. PubMed ID: 26276716 [TBL] [Abstract][Full Text] [Related]
9. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo. Ohnishi K; Semi K; Yamada Y Biochem Biophys Res Commun; 2014 Dec; 455(1-2):10-5. PubMed ID: 25019993 [TBL] [Abstract][Full Text] [Related]
10. Obstacles in Renal Regenerative Medicine: Metabolic and Epigenetic Parallels Between Cellular Reprogramming and Kidney Cancer Oncogenesis. Lichner Z; Mac-Way F; Yousef GM Eur Urol Focus; 2019 Mar; 5(2):250-261. PubMed ID: 28847686 [TBL] [Abstract][Full Text] [Related]
11. Current status in cancer cell reprogramming and its clinical implications. Izgi K; Canatan H; Iskender B J Cancer Res Clin Oncol; 2017 Mar; 143(3):371-383. PubMed ID: 27620745 [TBL] [Abstract][Full Text] [Related]
12. [iPS Cell Technology for Dissecting Mechanisms of Cancer Development]. Nakasuka F; Yamada Y Gan To Kagaku Ryoho; 2020 Oct; 47(10):1407-1410. PubMed ID: 33130730 [TBL] [Abstract][Full Text] [Related]
13. Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer. Yamada Y; Haga H; Yamada Y Stem Cells Transl Med; 2014 Oct; 3(10):1182-7. PubMed ID: 25122691 [TBL] [Abstract][Full Text] [Related]
14. DNA methylation dynamics in human induced pluripotent stem cells. Nishino K; Umezawa A Hum Cell; 2016 Jul; 29(3):97-100. PubMed ID: 27083573 [TBL] [Abstract][Full Text] [Related]
17. [Mammalian DNA methylation and its roles during the induced re-programming of somatic cells]. Hongwei S; Tiezhu A; Shanhua P; Chunsheng W Yi Chuan; 2014 May; 36(5):431-8. PubMed ID: 24846992 [TBL] [Abstract][Full Text] [Related]
18. Xenopatients 2.0: reprogramming the epigenetic landscapes of patient-derived cancer genomes. Menendez JA; Alarcón T; Corominas-Faja B; Cuyàs E; López-Bonet E; Martin AG; Vellon L Cell Cycle; 2014; 13(3):358-70. PubMed ID: 24406535 [TBL] [Abstract][Full Text] [Related]
19. PiRNAs link epigenetic modifications to reprogramming. Wang Y; Sun T; Wang K; Wang JX; Li PF Histol Histopathol; 2014 Dec; 29(12):1489-97. PubMed ID: 24760544 [TBL] [Abstract][Full Text] [Related]