BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23180692)

  • 1. Mitigating with macrophytes: submersed plants reduce the toxicity of pesticide-contaminated water to zooplankton.
    Brogan WR; Relyea RA
    Environ Toxicol Chem; 2013 Mar; 32(3):699-706. PubMed ID: 23180692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new mechanism of macrophyte mitigation: how submerged plants reduce malathion's acute toxicity to aquatic animals.
    Brogan WR; Relyea RA
    Chemosphere; 2014 Aug; 108():405-10. PubMed ID: 24630450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigation of malathion's acute toxicity by four submersed macrophyte species.
    Brogan WR; Relyea RA
    Environ Toxicol Chem; 2013 Jul; 32(7):1535-43. PubMed ID: 23564501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submerged macrophytes mitigate direct and indirect insecticide effects in freshwater communities.
    Brogan WR; Relyea RA
    PLoS One; 2015; 10(5):e0126677. PubMed ID: 25978686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals.
    Brogan WR; Relyea RA
    Environ Pollut; 2017 Jan; 220(Pt A):688-695. PubMed ID: 27823867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes.
    Declerck S; Vanderstukken M; Pals A; Muylaert K; De Meester L
    Ecology; 2007 Sep; 88(9):2199-210. PubMed ID: 17918398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of metsulfuron methyl and cypermethrin exposure on freshwater model ecosystems.
    Wendt-Rasch L; Pirzadeh P; Woin P
    Aquat Toxicol; 2003 May; 63(3):243-56. PubMed ID: 12711414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate and effects of the insecticide Dursban 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: I. Fate and primary effects of the active ingredient chlorpyrifos.
    Brock TC; Crum SJ; van Wijngaarden R; Budde BJ; Tijink J; Zuppelli A; Leeuwangh P
    Arch Environ Contam Toxicol; 1992 Jul; 23(1):69-84. PubMed ID: 1379031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic lake.
    Huss AA; Wehr JD
    Microb Ecol; 2004 May; 47(4):305-15. PubMed ID: 15037963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Living on the edge: populations of two zooplankton species living closer to agricultural fields are more resistant to a common insecticide.
    Bendis RJ; Relyea RA
    Environ Toxicol Chem; 2014 Dec; 33(12):2835-41. PubMed ID: 25220688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a common insecticide on wetland communities with varying quality of leaf litter inputs.
    Stoler AB; Mattes BM; Hintz WD; Jones DK; Lind L; Schuler MS; Relyea RA
    Environ Pollut; 2017 Jul; 226():452-462. PubMed ID: 28431762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. If you see one, have you seen them all?: Community-wide effects of insecticide cross-resistance in zooplankton populations near and far from agriculture.
    Bendis RJ; Relyea RA
    Environ Pollut; 2016 Aug; 215():234-246. PubMed ID: 27208756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A long-term assessment of pesticide mixture effects on aquatic invertebrate communities.
    Hasenbein S; Lawler SP; Geist J; Connon RE
    Environ Toxicol Chem; 2016 Jan; 35(1):218-32. PubMed ID: 26565581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetland defense: naturally occurring pesticide resistance in zooplankton populations protects the stability of aquatic communities.
    Bendis RJ; Relyea RA
    Oecologia; 2016 Jun; 181(2):487-98. PubMed ID: 26875187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of noradrenaline, a novel anti-biofouling component, to two non-target zooplankton species, Daphnia magna and Ceriodaphnia dubia.
    Overturf CL; Wormington AM; Blythe KN; Gohad NV; Mount AS; Roberts AP
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 May; 171():49-54. PubMed ID: 25819741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freshwater shrimps as sensitive test species for the risk assessment of pesticides in the tropics.
    Daam MA; Rico A
    Environ Sci Pollut Res Int; 2018 May; 25(14):13235-13243. PubMed ID: 27530199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated temperature prolongs long-term effects of a pesticide on Daphnia spp. due to altered competition in zooplankton communities.
    Knillmann S; Stampfli NC; Noskov YA; Beketov MA; Liess M
    Glob Chang Biol; 2013 May; 19(5):1598-609. PubMed ID: 23504978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effects of road salt and an insecticide on wetland communities.
    Stoler AB; Walker BM; Hintz WD; Jones DK; Lind L; Mattes BM; Schuler MS; Relyea RA
    Environ Toxicol Chem; 2017 Mar; 36(3):771-779. PubMed ID: 27775179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies.
    Celewicz-Gołdyn S; Kuczyńska-Kippen N
    PLoS One; 2017; 12(5):e0177317. PubMed ID: 28472138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pesticide effects on freshwater zooplankton: an ecological perspective.
    Hanazato T
    Environ Pollut; 2001; 112(1):1-10. PubMed ID: 11202648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.