These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 23180692)
1. Mitigating with macrophytes: submersed plants reduce the toxicity of pesticide-contaminated water to zooplankton. Brogan WR; Relyea RA Environ Toxicol Chem; 2013 Mar; 32(3):699-706. PubMed ID: 23180692 [TBL] [Abstract][Full Text] [Related]
2. A new mechanism of macrophyte mitigation: how submerged plants reduce malathion's acute toxicity to aquatic animals. Brogan WR; Relyea RA Chemosphere; 2014 Aug; 108():405-10. PubMed ID: 24630450 [TBL] [Abstract][Full Text] [Related]
3. Mitigation of malathion's acute toxicity by four submersed macrophyte species. Brogan WR; Relyea RA Environ Toxicol Chem; 2013 Jul; 32(7):1535-43. PubMed ID: 23564501 [TBL] [Abstract][Full Text] [Related]
4. Submerged macrophytes mitigate direct and indirect insecticide effects in freshwater communities. Brogan WR; Relyea RA PLoS One; 2015; 10(5):e0126677. PubMed ID: 25978686 [TBL] [Abstract][Full Text] [Related]
5. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals. Brogan WR; Relyea RA Environ Pollut; 2017 Jan; 220(Pt A):688-695. PubMed ID: 27823867 [TBL] [Abstract][Full Text] [Related]
6. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Declerck S; Vanderstukken M; Pals A; Muylaert K; De Meester L Ecology; 2007 Sep; 88(9):2199-210. PubMed ID: 17918398 [TBL] [Abstract][Full Text] [Related]
7. Effects of metsulfuron methyl and cypermethrin exposure on freshwater model ecosystems. Wendt-Rasch L; Pirzadeh P; Woin P Aquat Toxicol; 2003 May; 63(3):243-56. PubMed ID: 12711414 [TBL] [Abstract][Full Text] [Related]
8. Fate and effects of the insecticide Dursban 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: I. Fate and primary effects of the active ingredient chlorpyrifos. Brock TC; Crum SJ; van Wijngaarden R; Budde BJ; Tijink J; Zuppelli A; Leeuwangh P Arch Environ Contam Toxicol; 1992 Jul; 23(1):69-84. PubMed ID: 1379031 [TBL] [Abstract][Full Text] [Related]
9. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic lake. Huss AA; Wehr JD Microb Ecol; 2004 May; 47(4):305-15. PubMed ID: 15037963 [TBL] [Abstract][Full Text] [Related]
10. Living on the edge: populations of two zooplankton species living closer to agricultural fields are more resistant to a common insecticide. Bendis RJ; Relyea RA Environ Toxicol Chem; 2014 Dec; 33(12):2835-41. PubMed ID: 25220688 [TBL] [Abstract][Full Text] [Related]
11. Effects of a common insecticide on wetland communities with varying quality of leaf litter inputs. Stoler AB; Mattes BM; Hintz WD; Jones DK; Lind L; Schuler MS; Relyea RA Environ Pollut; 2017 Jul; 226():452-462. PubMed ID: 28431762 [TBL] [Abstract][Full Text] [Related]
12. If you see one, have you seen them all?: Community-wide effects of insecticide cross-resistance in zooplankton populations near and far from agriculture. Bendis RJ; Relyea RA Environ Pollut; 2016 Aug; 215():234-246. PubMed ID: 27208756 [TBL] [Abstract][Full Text] [Related]
13. A long-term assessment of pesticide mixture effects on aquatic invertebrate communities. Hasenbein S; Lawler SP; Geist J; Connon RE Environ Toxicol Chem; 2016 Jan; 35(1):218-32. PubMed ID: 26565581 [TBL] [Abstract][Full Text] [Related]
14. Wetland defense: naturally occurring pesticide resistance in zooplankton populations protects the stability of aquatic communities. Bendis RJ; Relyea RA Oecologia; 2016 Jun; 181(2):487-98. PubMed ID: 26875187 [TBL] [Abstract][Full Text] [Related]
15. Toxicity of noradrenaline, a novel anti-biofouling component, to two non-target zooplankton species, Daphnia magna and Ceriodaphnia dubia. Overturf CL; Wormington AM; Blythe KN; Gohad NV; Mount AS; Roberts AP Comp Biochem Physiol C Toxicol Pharmacol; 2015 May; 171():49-54. PubMed ID: 25819741 [TBL] [Abstract][Full Text] [Related]
16. Freshwater shrimps as sensitive test species for the risk assessment of pesticides in the tropics. Daam MA; Rico A Environ Sci Pollut Res Int; 2018 May; 25(14):13235-13243. PubMed ID: 27530199 [TBL] [Abstract][Full Text] [Related]
17. Elevated temperature prolongs long-term effects of a pesticide on Daphnia spp. due to altered competition in zooplankton communities. Knillmann S; Stampfli NC; Noskov YA; Beketov MA; Liess M Glob Chang Biol; 2013 May; 19(5):1598-609. PubMed ID: 23504978 [TBL] [Abstract][Full Text] [Related]
18. Combined effects of road salt and an insecticide on wetland communities. Stoler AB; Walker BM; Hintz WD; Jones DK; Lind L; Mattes BM; Schuler MS; Relyea RA Environ Toxicol Chem; 2017 Mar; 36(3):771-779. PubMed ID: 27775179 [TBL] [Abstract][Full Text] [Related]
19. Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies. Celewicz-Gołdyn S; Kuczyńska-Kippen N PLoS One; 2017; 12(5):e0177317. PubMed ID: 28472138 [TBL] [Abstract][Full Text] [Related]
20. Pesticide effects on freshwater zooplankton: an ecological perspective. Hanazato T Environ Pollut; 2001; 112(1):1-10. PubMed ID: 11202648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]