BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 23180771)

  • 1. The spatial and temporal origin of chandelier cells in mouse neocortex.
    Taniguchi H; Lu J; Huang ZJ
    Science; 2013 Jan; 339(6115):70-4. PubMed ID: 23180771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-dependent function of neocortical chandelier cells.
    Woodruff AR; McGarry LM; Vogels TP; Inan M; Anderson SA; Yuste R
    J Neurosci; 2011 Dec; 31(49):17872-86. PubMed ID: 22159102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional Cellular Environment Shapes Phenotypic Variations of Hippocampal and Neocortical Chandelier Cells.
    Ishino Y; Yetman MJ; Sossi SM; Steinecke A; Hayano Y; Taniguchi H
    J Neurosci; 2017 Oct; 37(41):9901-9916. PubMed ID: 28912162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neocortical inhibitory system.
    Druga R
    Folia Biol (Praha); 2009; 55(6):201-17. PubMed ID: 20163769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of GABAergic neurons in the human neocortex.
    Letinic K; Zoncu R; Rakic P
    Nature; 2002 Jun; 417(6889):645-9. PubMed ID: 12050665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lineage-specific laminar organization of cortical GABAergic interneurons.
    Ciceri G; Dehorter N; Sols I; Huang ZJ; Maravall M; Marín O
    Nat Neurosci; 2013 Sep; 16(9):1199-210. PubMed ID: 23933753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended Production of Cortical Interneurons into the Third Trimester of Human Gestation.
    Arshad A; Vose LR; Vinukonda G; Hu F; Yoshikawa K; Csiszar A; Brumberg JC; Ballabh P
    Cereb Cortex; 2016 May; 26(5):2242-2256. PubMed ID: 25882040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells.
    Lu J; Tucciarone J; Padilla-Coreano N; He M; Gordon JA; Huang ZJ
    Nat Neurosci; 2017 Oct; 20(10):1377-1383. PubMed ID: 28825718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration.
    Hevner RF; Daza RA; Englund C; Kohtz J; Fink A
    Neuroscience; 2004; 124(3):605-18. PubMed ID: 14980731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neocortical Chandelier Cells Developmentally Shape Axonal Arbors through Reorganization but Establish Subcellular Synapse Specificity without Refinement.
    Steinecke A; Hozhabri E; Tapanes S; Ishino Y; Zeng H; Kamasawa N; Taniguchi H
    eNeuro; 2017; 4(3):. PubMed ID: 28584877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The progenitor zone of the ventral medial ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few neocortical interneurons.
    Flandin P; Kimura S; Rubenstein JL
    J Neurosci; 2010 Feb; 30(8):2812-23. PubMed ID: 20181579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progressive divisions of multipotent neural progenitors generate late-born chandelier cells in the neocortex.
    Sultan KT; Liu WA; Li ZL; Shen Z; Li Z; Zhang XJ; Dean O; Ma J; Shi SH
    Nat Commun; 2018 Nov; 9(1):4595. PubMed ID: 30389944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer specification of transplanted interneurons in developing mouse neocortex.
    Valcanis H; Tan SS
    J Neurosci; 2003 Jun; 23(12):5113-22. PubMed ID: 12832535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors.
    Jakovcevski I; Mayer N; Zecevic N
    Cereb Cortex; 2011 Aug; 21(8):1771-82. PubMed ID: 21139075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense and overlapping innervation of pyramidal neurons by chandelier cells.
    Inan M; Blázquez-Llorca L; Merchán-Pérez A; Anderson SA; DeFelipe J; Yuste R
    J Neurosci; 2013 Jan; 33(5):1907-14. PubMed ID: 23365230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically determined cell death of developing cortical interneurons.
    Southwell DG; Paredes MF; Galvao RP; Jones DL; Froemke RC; Sebe JY; Alfaro-Cervello C; Tang Y; Garcia-Verdugo JM; Rubenstein JL; Baraban SC; Alvarez-Buylla A
    Nature; 2012 Nov; 491(7422):109-13. PubMed ID: 23041929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons.
    Pleasure SJ; Anderson S; Hevner R; Bagri A; Marin O; Lowenstein DH; Rubenstein JL
    Neuron; 2000 Dec; 28(3):727-40. PubMed ID: 11163262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins of cortical interneuron subtypes.
    Xu Q; Cobos I; De La Cruz E; Rubenstein JL; Anderson SA
    J Neurosci; 2004 Mar; 24(11):2612-22. PubMed ID: 15028753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon.
    Xu Q; Tam M; Anderson SA
    J Comp Neurol; 2008 Jan; 506(1):16-29. PubMed ID: 17990269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic Nkx2.1-expressing neural precursor cells contribute to the regional heterogeneity of adult V-SVZ neural stem cells.
    Delgado RN; Lim DA
    Dev Biol; 2015 Nov; 407(2):265-74. PubMed ID: 26387477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.