BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 23180962)

  • 1. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application.
    Stout DA; Yoo J; Santiago-Miranda AN; Webster TJ
    Int J Nanomedicine; 2012; 7():5653-69. PubMed ID: 23180962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites.
    Asiri AM; Marwani HM; Khan SB; Webster TJ
    Int J Nanomedicine; 2014; 9():5533-9. PubMed ID: 25489241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA.
    Asiri AM; Marwani HM; Khan SB; Webster TJ
    Int J Nanomedicine; 2015; 10():89-96. PubMed ID: 25565806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth characteristics of different heart cells on novel nanopatch substrate during electrical stimulation.
    Stout DA; Raimondo E; Marostica G; Webster TJ
    Biomed Mater Eng; 2014; 24(6):2101-7. PubMed ID: 25226907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications.
    Liu H; Webster TJ
    Int J Nanomedicine; 2010 Apr; 5():299-313. PubMed ID: 20463945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased lung carcinoma cell density on select polymer nanometer surface features for lung replacement therapies.
    Zhang L; Chun YW; Webster TJ
    Int J Nanomedicine; 2010 May; 5():269-75. PubMed ID: 20517474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers.
    Qi R; Cao X; Shen M; Guo R; Yu J; Shi X
    J Biomater Sci Polym Ed; 2012; 23(1-4):299-313. PubMed ID: 21244744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features.
    Miller DC; Thapa A; Haberstroh KM; Webster TJ
    Biomaterials; 2004 Jan; 25(1):53-61. PubMed ID: 14580908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating.
    Hsiao CW; Bai MY; Chang Y; Chung MF; Lee TY; Wu CT; Maiti B; Liao ZX; Li RK; Sung HW
    Biomaterials; 2013 Jan; 34(4):1063-72. PubMed ID: 23164424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces.
    Miller DC; Thapa A; Haberstroh KM; Webster TJ
    IEEE Trans Nanobioscience; 2002 Jun; 1(2):61-6. PubMed ID: 16689208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study.
    Yao C; Hedrick M; Pareek G; Renzulli J; Haleblian G; Webster TJ
    Int J Nanomedicine; 2013; 8():3285-96. PubMed ID: 24039415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly-lactic-glycolic-acid surface nanotopographies selectively decrease breast adenocarcinoma cell functions.
    Zhang L; Webster TJ
    Nanotechnology; 2012 Apr; 23(15):155101. PubMed ID: 22436863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold.
    Xin X; Hussain M; Mao JJ
    Biomaterials; 2007 Jan; 28(2):316-25. PubMed ID: 17010425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering.
    Parizek M; Douglas TE; Novotna K; Kromka A; Brady MA; Renzing A; Voss E; Jarosova M; Palatinus L; Tesarek P; Ryparova P; Lisa V; dos Santos AM; Warnke PH; Bacakova L
    Int J Nanomedicine; 2012; 7():1931-51. PubMed ID: 22619532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased healthy osteoblast to osteosarcoma density ratios on specific PLGA nanopatterns.
    Wang Y; Zhang L; Sun L; Webster TJ
    Int J Nanomedicine; 2013; 8():159-66. PubMed ID: 23326191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles.
    Hong Z; Zhang P; Liu A; Chen L; Chen X; Jing X
    J Biomed Mater Res A; 2007 Jun; 81(3):515-22. PubMed ID: 17133447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological and mechanical evaluation of poly(lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration.
    Kaur T; Kulanthaivel S; Thirugnanam A; Banerjee I; Pramanik K
    Biomed Mater; 2017 Mar; 12(2):025012. PubMed ID: 28181476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro.
    Duan B; Wu L; Li X; Yuan X; Li X; Zhang Y; Yao K
    J Biomater Sci Polym Ed; 2007; 18(1):95-115. PubMed ID: 17274454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.