These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23181159)

  • 21. Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements.
    Takegahara N; Kang S; Nojima S; Takamatsu H; Okuno T; Kikutani H; Toyofuku T; Kumanogoh A
    FASEB J; 2010 Dec; 24(12):4782-92. PubMed ID: 20702777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone.
    Takito J; Inoue S; Nakamura M
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29587415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiation of mononuclear cells into multinucleated osteoclast-like cells.
    Severson AR
    Exp Cell Biol; 1983; 51(5):267-74. PubMed ID: 6628824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Meltrin-alpha, a fusion protein involved in multinucleated giant cell and osteoclast formation.
    Abe E; Mocharla H; Yamate T; Taguchi Y; Manolagas SC
    Calcif Tissue Int; 1999 Jun; 64(6):508-15. PubMed ID: 10341023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linarin and its aglycone acacetin abrogate actin ring formation and focal contact to bone matrix of bone-resorbing osteoclasts through inhibition of αvβ3 integrin and core-linked CD44.
    Kim SI; Kim YH; Kang BG; Kang MK; Lee EJ; Kim DY; Oh H; Oh SY; Na W; Lim SS; Kang YH
    Phytomedicine; 2020 Dec; 79():153351. PubMed ID: 32987362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly.
    Luxenburg C; Geblinger D; Klein E; Anderson K; Hanein D; Geiger B; Addadi L
    PLoS One; 2007 Jan; 2(1):e179. PubMed ID: 17264882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric oxide enhances osteoclastogenesis possibly by mediating cell fusion.
    Nilforoushan D; Gramoun A; Glogauer M; Manolson MF
    Nitric Oxide; 2009 Aug; 21(1):27-36. PubMed ID: 19389479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adseverin plays a role in osteoclast differentiation and periodontal disease-mediated bone loss.
    Jiang H; Wang Y; Viniegra A; Sima C; McCulloch CA; Glogauer M
    FASEB J; 2015 Jun; 29(6):2281-91. PubMed ID: 25681458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The elementary fusion modalities of osteoclasts.
    Søe K; Hobolt-Pedersen AS; Delaisse JM
    Bone; 2015 Apr; 73():181-9. PubMed ID: 25527420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-substrate traction force regulates the fusion of osteoclast precursors through cell-cell interaction.
    Sun Q; Liu C; Bai X; Huo B
    Biomech Model Mechanobiol; 2020 Apr; 19(2):481-492. PubMed ID: 31529292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts.
    Baron R; Neff L; Tran Van P; Nefussi JR; Vignery A
    Am J Pathol; 1986 Feb; 122(2):363-78. PubMed ID: 3946557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colony-stimulating factor-1 stimulates the fusion process in osteoclasts.
    Amano H; Yamada S; Felix R
    J Bone Miner Res; 1998 May; 13(5):846-53. PubMed ID: 9610749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies of OC-STAMP in Osteoclast Fusion: A New Knockout Mouse Model, Rescue of Cell Fusion, and Transmembrane Topology.
    Witwicka H; Hwang SY; Reyes-Gutierrez P; Jia H; Odgren PE; Donahue LR; Birnbaum MJ; Odgren PR
    PLoS One; 2015; 10(6):e0128275. PubMed ID: 26042409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unsatisfactory gene transfer into bone-resorbing osteoclasts with liposomal transfection systems.
    Laitala-Leinonen T
    J Negat Results Biomed; 2005 Aug; 4():5. PubMed ID: 16124882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts.
    ten Harkel B; Schoenmaker T; Picavet DI; Davison NL; de Vries TJ; Everts V
    PLoS One; 2015; 10(10):e0139564. PubMed ID: 26426806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. E-cadherin is important for cell differentiation during osteoclastogenesis.
    Fiorino C; Harrison RE
    Bone; 2016 May; 86():106-18. PubMed ID: 26959175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein.
    Destaing O; Saltel F; Géminard JC; Jurdic P; Bard F
    Mol Biol Cell; 2003 Feb; 14(2):407-16. PubMed ID: 12589043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression on outer membranes of mannose residues, which are involved in osteoclast formation via cellular fusion events.
    Kurachi T; Morita I; Oki T; Ueki T; Sakaguchi K; Enomoto S; Murota S
    J Biol Chem; 1994 Jul; 269(26):17572-6. PubMed ID: 8021265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of the Src-cortactin pathway in podosome formation and turnover during polarization of cultured osteoclasts.
    Luxenburg C; Parsons JT; Addadi L; Geiger B
    J Cell Sci; 2006 Dec; 119(Pt 23):4878-88. PubMed ID: 17105771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteoclast fusion and fission.
    Jansen ID; Vermeer JA; Bloemen V; Stap J; Everts V
    Calcif Tissue Int; 2012 Jun; 90(6):515-22. PubMed ID: 22527205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.