These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Catalytic role of calix[4]hydroquinone in acetone-water proton exchange: a quantum chemical study of proton transfer via keto-enol tautomerism. Zakharov M; Masunov AE; Dreuw A J Phys Chem A; 2008 Oct; 112(41):10405-12. PubMed ID: 18800781 [TBL] [Abstract][Full Text] [Related]
6. The curious case of the hydrated proton. Knight C; Voth GA Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071 [TBL] [Abstract][Full Text] [Related]
7. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
8. Proton transfer from the inactive gas-phase nicotine structure to the bioactive aqueous-phase structure. Gaigeot MP; Cimas A; Seydou M; Kim JY; Lee S; Schermann JP J Am Chem Soc; 2010 Dec; 132(51):18067-77. PubMed ID: 21141855 [TBL] [Abstract][Full Text] [Related]
10. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures. Bankura A; Chandra A J Chem Phys; 2012 Mar; 136(11):114509. PubMed ID: 22443779 [TBL] [Abstract][Full Text] [Related]
11. Ab initio molecular dynamics simulation of the structure and proton transport dynamics of methanol-water solutions. Morrone JA; Haslinger KE; Tuckerman ME J Phys Chem B; 2006 Mar; 110(8):3712-20. PubMed ID: 16494428 [TBL] [Abstract][Full Text] [Related]
12. An improved multistate empirical valence bond model for aqueous proton solvation and transport. Wu Y; Chen H; Wang F; Paesani F; Voth GA J Phys Chem B; 2008 Jan; 112(2):467-82. PubMed ID: 17999484 [TBL] [Abstract][Full Text] [Related]
13. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics. Marsalek O; Uhlig F; VandeVondele J; Jungwirth P Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274 [TBL] [Abstract][Full Text] [Related]
14. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores. Bankura A; Chandra A J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519 [TBL] [Abstract][Full Text] [Related]
15. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes. Di Noto V; Gliubizzi R; Negro E; Pace G J Phys Chem B; 2006 Dec; 110(49):24972-86. PubMed ID: 17149919 [TBL] [Abstract][Full Text] [Related]
16. Role of solvation dynamics in excited state proton transfer of 1-naphthol in nanoscopic water clusters formed in a hydrophobic solvent. Rakshit S; Saha R; Verma PK; Pal SK Photochem Photobiol; 2012; 88(4):851-9. PubMed ID: 22417227 [TBL] [Abstract][Full Text] [Related]
17. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. Kelly CP; Cramer CJ; Truhlar DG J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764 [TBL] [Abstract][Full Text] [Related]
18. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. Maupin CM; Aradi B; Voth GA J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461 [TBL] [Abstract][Full Text] [Related]
19. Hydrated Excess Protons in Acetonitrile/Water Mixtures: Solvation Species and Ultrafast Proton Motions. Kundu A; Dahms F; Fingerhut BP; Nibbering ETJ; Pines E; Elsaesser T J Phys Chem Lett; 2019 May; 10(9):2287-2294. PubMed ID: 30999753 [TBL] [Abstract][Full Text] [Related]
20. Proton transfer in concentrated aqueous hydroxide visualized using ultrafast infrared spectroscopy. Roberts ST; Ramasesha K; Petersen PB; Mandal A; Tokmakoff A J Phys Chem A; 2011 Apr; 115(16):3957-72. PubMed ID: 21314148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]