BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23181326)

  • 1. Study of interfacial tension between an organic solvent and aqueous electrolyte solutions using electrostatic dissipative particle dynamics simulations.
    Mayoral E; Nahmad-Achar E
    J Chem Phys; 2012 Nov; 137(19):194701. PubMed ID: 23181326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the temperature dependent interfacial tension between organic solvents and water using dissipative particle dynamics.
    Mayoral E; Goicochea AG
    J Chem Phys; 2013 Mar; 138(9):094703. PubMed ID: 23485318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bead-bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension.
    Maiti A; McGrother S
    J Chem Phys; 2004 Jan; 120(3):1594-601. PubMed ID: 15268286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale Modeling of the Effect of Pressure on the Interfacial Tension and Other Cohesion Parameters in Binary Mixtures.
    Mayoral E; Nahmad-Achar E
    J Phys Chem B; 2016 Mar; 120(9):2372-9. PubMed ID: 26840645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of Interfacial Tension of Liquid-Liquid Ternary Mixtures Using Optimized Parametrization for Coarse-Grained Models.
    Steinmetz D; Creton B; Lachet V; Rousseau B; Nieto-Draghi C
    J Chem Theory Comput; 2018 Aug; 14(8):4438-4454. PubMed ID: 29906108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse Grained Simulations of the Electrolytes at the Water-Air Interface from Many Body Dissipative Particle Dynamics.
    Ghoufi A; Malfreyt P
    J Chem Theory Comput; 2012 Mar; 8(3):787-91. PubMed ID: 26593339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-size effects in dissipative particle dynamics simulations.
    Velázquez ME; Gama-Goicochea A; González-Melchor M; Neria M; Alejandre J
    J Chem Phys; 2006 Feb; 124(8):084104. PubMed ID: 16512705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DPD Parameters Estimation for Simultaneously Simulating Water-Oil Interfaces and Aqueous Nonionic Surfactants.
    Khedr A; Striolo A
    J Chem Theory Comput; 2018 Dec; 14(12):6460-6471. PubMed ID: 30376315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface tension of silica hydroxylated nanoparticle with brine: a combined experimental and molecular dynamics study.
    de Lara LS; Michelon MF; Metin CO; Nguyen QP; Miranda CR
    J Chem Phys; 2012 Apr; 136(16):164702. PubMed ID: 22559499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations.
    Li Y; Guo Y; Bao M; Gao X
    J Colloid Interface Sci; 2011 Sep; 361(2):573-80. PubMed ID: 21719024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic interactions in dissipative particle dynamics using the Ewald sums.
    González-Melchor M; Mayoral E; Velázquez ME; Alejandre J
    J Chem Phys; 2006 Dec; 125(22):224107. PubMed ID: 17176134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The array and interfacial activity of sodium dodecyl benzene sulfonate and sodium oleate at the oil/water interface.
    Li Y; Zhang P; Dong FL; Cao XL; Song XW; Cui XH
    J Colloid Interface Sci; 2005 Oct; 290(1):275-80. PubMed ID: 15927196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.
    Dutcher CS; Wexler AS; Clegg SL
    J Phys Chem A; 2010 Nov; 114(46):12216-30. PubMed ID: 21043484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations.
    Deguillard E; Pannacci N; Creton B; Rousseau B
    J Chem Phys; 2013 Apr; 138(14):144102. PubMed ID: 24981523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New parametrization method for dissipative particle dynamics.
    Travis KP; Bankhead M; Good K; Owens SL
    J Chem Phys; 2007 Jul; 127(1):014109. PubMed ID: 17627339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscale modeling of polyelectrolyte brushes with salt.
    Ibergay C; Malfreyt P; Tildesley DJ
    J Phys Chem B; 2010 Jun; 114(21):7274-85. PubMed ID: 20455593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microphase separation of diblock copolymer poly(styrene-b-isoprene): A dissipative particle dynamics simulation study.
    Li X; Guo J; Liu Y; Liang H
    J Chem Phys; 2009 Feb; 130(7):074908. PubMed ID: 19239317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-liquid equilibria for soft-repulsive particles: improved equation of state and methodology for representing molecules of different sizes and chemistry in dissipative particle dynamics.
    Liyana-Arachchi TP; Jamadagni SN; Eike D; Koenig PH; Siepmann JI
    J Chem Phys; 2015 Jan; 142(4):044902. PubMed ID: 25638004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic coefficients of aqueous weak electrolyte solutions: influence of dissociation on data reduction and modeling.
    Reschke T; Naeem S; Sadowski G
    J Phys Chem B; 2012 Jun; 116(25):7479-91. PubMed ID: 22620709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.