BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 23181420)

  • 1. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse.
    McVey Neufeld KA; Mao YK; Bienenstock J; Foster JA; Kunze WA
    Neurogastroenterol Motil; 2013 Feb; 25(2):183-e88. PubMed ID: 23181420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin.
    McVey Neufeld KA; Perez-Burgos A; Mao YK; Bienenstock J; Kunze WA
    Neurogastroenterol Motil; 2015 May; 27(5):627-36. PubMed ID: 25727007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal microbiota influence the early postnatal development of the enteric nervous system.
    Collins J; Borojevic R; Verdu EF; Huizinga JD; Ratcliffe EM
    Neurogastroenterol Motil; 2014 Jan; 26(1):98-107. PubMed ID: 24329946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of myenteric sensory neurons in the mouse small intestine.
    Mao Y; Wang B; Kunze W
    J Neurophysiol; 2006 Sep; 96(3):998-1010. PubMed ID: 16899648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bursts of recurrent excitation in the activation of intrinsic sensory neurons of the intestine.
    Bertrand PP
    Neuroscience; 2004; 128(1):51-63. PubMed ID: 15450353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice.
    Asano Y; Hiramoto T; Nishino R; Aiba Y; Kimura T; Yoshihara K; Koga Y; Sudo N
    Am J Physiol Gastrointest Liver Physiol; 2012 Dec; 303(11):G1288-95. PubMed ID: 23064760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon.
    Nurgali K; Stebbing MJ; Furness JB
    J Comp Neurol; 2004 Jan; 468(1):112-24. PubMed ID: 14648694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxytocin hyperpolarizes cultured duodenum myenteric intrinsic primary afferent neurons by opening BK(Ca) channels through IP₃ pathway.
    Che T; Sun H; Li J; Yu X; Zhu D; Xue B; Liu K; Zhang M; Kunze W; Liu C
    J Neurochem; 2012 May; 121(4):516-25. PubMed ID: 22356163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human resident gut microbe
    Aktar R; Parkar N; Stentz R; Baumard L; Parker A; Goldson A; Brion A; Carding S; Blackshaw A; Peiris M
    Gut Microbes; 2020 Nov; 11(6):1745-1757. PubMed ID: 32515657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifidobacterium longum NCC3001 inhibits AH neuron excitability.
    Khoshdel A; Verdu EF; Kunze W; McLean P; Bergonzelli G; Huizinga JD
    Neurogastroenterol Motil; 2013 Jul; 25(7):e478-84. PubMed ID: 23663494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic excitation states and firing patterns are controlled by sodium channel kinetics in myenteric neurons: a simulation study.
    Korogod SM; Osorio N; Kulagina IB; Delmas P
    Channels (Austin); 2014; 8(6):536-43. PubMed ID: 25616688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent molecules as tools to study Ca2+ signaling, mitochondrial dynamics and synaptic function in enteric neurons.
    Vanden Berghe P
    Verh K Acad Geneeskd Belg; 2004; 66(5-6):407-25. PubMed ID: 15641568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections of submucosal neurons to the myenteric plexus of the guinea pig intestine: in vitro tracing of microcircuits by retrograde and anterograde transport.
    Kirchgessner AL; Gershon MD
    J Comp Neurol; 1988 Nov; 277(4):487-98. PubMed ID: 3209743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphine decreases enteric neuron excitability via inhibition of sodium channels.
    Smith TH; Grider JR; Dewey WL; Akbarali HI
    PLoS One; 2012; 7(9):e45251. PubMed ID: 23028881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neurochemistry and innervation patterns of extrinsic sensory and sympathetic nerves in the myenteric plexus of the C57Bl6 mouse jejunum.
    Tan LL; Bornstein JC; Anderson CR
    Neuroscience; 2010 Mar; 166(2):564-79. PubMed ID: 20034545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods.
    Nishino R; Mikami K; Takahashi H; Tomonaga S; Furuse M; Hiramoto T; Aiba Y; Koga Y; Sudo N
    Neurogastroenterol Motil; 2013 Jun; 25(6):521-8. PubMed ID: 23480302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preserved adiposity in the Fischer 344 rat devoid of gut microbiota.
    Swartz TD; Sakar Y; Duca FA; Covasa M
    FASEB J; 2013 Apr; 27(4):1701-10. PubMed ID: 23349551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platelet-activating factor in the enteric nervous system of the guinea pig small intestine.
    Wang GD; Wang XY; Hu HZ; Fang XC; Liu S; Gao N; Xia Y
    Am J Physiol Gastrointest Liver Physiol; 2006 Nov; 291(5):G928-37. PubMed ID: 17030900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic sensory neurons of mouse gut--toward a detailed knowledge of enteric neural circuitry across species. Focus on "characterization of myenteric sensory neurons in the mouse small intestine".
    Bornstein JC
    J Neurophysiol; 2006 Sep; 96(3):973-4. PubMed ID: 16837658
    [No Abstract]   [Full Text] [Related]  

  • 20. Squalamine Restores the Function of the Enteric Nervous System in Mouse Models of Parkinson's Disease.
    West CL; Mao YK; Delungahawatta T; Amin JY; Farhin S; McQuade RM; Diwakarla S; Pustovit R; Stanisz AM; Bienenstock J; Barbut D; Zasloff M; Furness JB; Kunze WA
    J Parkinsons Dis; 2020; 10(4):1477-1491. PubMed ID: 32925094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.