These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23181481)

  • 1. Impact of temperature, CO2 fixation and nitrate reduction on selenium reduction, by a paddy soil Clostridium strain.
    Bao P; Huang H; Hu ZY; Häggblom MM; Zhu YG
    J Appl Microbiol; 2013 Mar; 114(3):703-12. PubMed ID: 23181481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.
    Wang YJ; Dang F; Zhao JT; Zhong H
    Environ Pollut; 2016 Jun; 213():232-239. PubMed ID: 26901075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions.
    Zhang J; Wang Y; Shao Z; Li J; Zan S; Zhou S; Yang R
    J Environ Sci (China); 2019 Mar; 77():238-249. PubMed ID: 30573088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils.
    Zhang J; Zhao S; Xu Y; Zhou W; Huang K; Tang Z; Zhao FJ
    Environ Sci Technol; 2017 Apr; 51(8):4377-4386. PubMed ID: 28358982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.
    Long XE; Yao H; Wang J; Huang Y; Singh BK; Zhu YG
    Environ Sci Technol; 2015 Jun; 49(12):7152-60. PubMed ID: 25989872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression and biochemical characterization of assimilatory nitrate and nitrite reductase reveals adaption and potential of Bacillus megaterium NCT-2 in secondary salinization soil.
    Chu S; Zhang D; Wang D; Zhi Y; Zhou P
    Int J Biol Macromol; 2017 Aug; 101():1019-1028. PubMed ID: 28389402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Reduction of selenite to elemental red selenium under aerobic condition by Pseudomonas alcaliphila MBR].
    Jiang H; He X; Zhang L; Tao Y; Wang X; Gao P; Li D
    Wei Sheng Wu Xue Bao; 2010 Oct; 50(10):1347-52. PubMed ID: 21141469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions.
    Ridley H; Watts CA; Richardson DJ; Butler CS
    Appl Environ Microbiol; 2006 Aug; 72(8):5173-80. PubMed ID: 16885262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenium speciation in soil and rice: influence of water management and Se fertilization.
    Li HF; Lombi E; Stroud JL; McGrath SP; Zhao FJ
    J Agric Food Chem; 2010 Nov; 58(22):11837-43. PubMed ID: 20964343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of selenite to elemental red selenium by Pseudomonas sp. Strain CA5.
    Hunter WJ; Manter DK
    Curr Microbiol; 2009 May; 58(5):493-8. PubMed ID: 19189180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil.
    Tan Y; Yao R; Wang R; Wang D; Wang G; Zheng S
    Microb Cell Fact; 2016 Sep; 15(1):157. PubMed ID: 27630128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions.
    Kuroda M; Notaguchi E; Sato A; Yoshioka M; Hasegawa A; Kagami T; Narita T; Yamashita M; Sei K; Soda S; Ike M
    J Biosci Bioeng; 2011 Sep; 112(3):259-64. PubMed ID: 21676651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.
    Wang X; Zhang D; Pan X; Lee DJ; Al-Misned FA; Mortuza MG; Gadd GM
    Chemosphere; 2017 Mar; 170():266-273. PubMed ID: 28011305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dechlorination of p,p'-DDTs coupled with sulfate reduction by novel sulfate-reducing bacterium Clostridium sp. BXM.
    Bao P; Hu ZY; Wang XJ; Chen J; Ba YX; Hua J; Zhu CY; Zhong M; Wu CY
    Environ Pollut; 2012 Mar; 162():303-10. PubMed ID: 22243878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers under anaerobic condition.
    Zhou ZF; Yao YH; Wang MX; Zuo XH
    Arch Microbiol; 2017 Oct; 199(8):1091-1101. PubMed ID: 28421249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India.
    Bajaj M; Schmidt S; Winter J
    Microb Cell Fact; 2012 Jul; 11():64. PubMed ID: 22607265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1.
    Fujita M; Ike M; Kashiwa M; Hashimoto R; Soda S
    Biotechnol Bioeng; 2002 Dec; 80(7):755-61. PubMed ID: 12402321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption and speciation of selenium in boreal forest soil.
    Söderlund M; Virkanen J; Holgersson S; Lehto J
    J Environ Radioact; 2016 Nov; 164():220-231. PubMed ID: 27521902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Communities and Functional Genes Stimulated During Anaerobic Arsenite Oxidation and Nitrate Reduction in a Paddy Soil.
    Li X; Qiao J; Li S; Häggblom MM; Li F; Hu M
    Environ Sci Technol; 2020 Feb; 54(4):2172-2181. PubMed ID: 31773946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiological selenate to selenite conversion for selenium removal.
    Hageman SP; van der Weijden RD; Weijma J; Buisman CJ
    Water Res; 2013 May; 47(7):2118-28. PubMed ID: 23485421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.