BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 23181510)

  • 1. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings.
    Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP
    Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings.
    Nguyen SH; Webb HK; Hasan J; Tobin MJ; Crawford RJ; Ivanova EP
    Colloids Surf B Biointerfaces; 2013 Jun; 106():126-34. PubMed ID: 23434701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-spatial-resolution mapping of superhydrophobic cicada wing surface chemistry using infrared microspectroscopy and infrared imaging at two synchrotron beamlines.
    Tobin MJ; Puskar L; Hasan J; Webb HK; Hirschmugl CJ; Nasse MJ; Gervinskas G; Juodkazis S; Watson GS; Watson JA; Crawford RJ; Ivanova EP
    J Synchrotron Radiat; 2013 May; 20(Pt 3):482-9. PubMed ID: 23592628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Role of Habitat on the Wettability of Cicada Wings.
    Oh J; Dana CE; Hong S; Román JK; Jo KD; Hong JW; Nguyen J; Cropek DM; Alleyne M; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27173-27184. PubMed ID: 28719187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces.
    Bixler GD; Bhushan B
    Nanoscale; 2013 Sep; 5(17):7685-710. PubMed ID: 23884183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal versus antibacterial defence of insect wings.
    Ivanova EP; Linklater DP; Aburto-Medina A; Le P; Baulin VA; Khuong Duy Nguyen H; Curtain R; Hanssen E; Gervinskas G; Hock Ng S; Khanh Truong V; Luque P; Ramm G; Wösten HAB; Crawford RJ; Juodkazis S; Maclaughlin S
    J Colloid Interface Sci; 2021 Dec; 603():886-897. PubMed ID: 34265480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact angle hysteresis on regular pillar-like hydrophobic surfaces.
    Yeh KY; Chen LJ; Chang JY
    Langmuir; 2008 Jan; 24(1):245-51. PubMed ID: 18067331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow.
    Bixler GD; Bhushan B
    Nanoscale; 2014 Jan; 6(1):76-96. PubMed ID: 24212921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of active behaviors and passive structures contributes to the cleanliness of housefly wing surfaces: A new insight for the design of cleaning materials.
    Wan Q; Li H; Zhang S; Wang C; Su S; Long S; Pan B
    Colloids Surf B Biointerfaces; 2019 Aug; 180():473-480. PubMed ID: 31102851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing.
    Watson GS; Cribb BW; Watson JA
    ACS Nano; 2010 Jan; 4(1):129-36. PubMed ID: 20099910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of micro/nano channel structuring in repelling water on cuticle arrays of the lacewing.
    Watson GS; Cribb BW; Watson JA
    J Struct Biol; 2010 Jul; 171(1):44-51. PubMed ID: 20347993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting properties on nanostructured surfaces of cicada wings.
    Sun M; Watson GS; Zheng Y; Watson JA; Liang A
    J Exp Biol; 2009 Oct; 212(19):3148-55. PubMed ID: 19749108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the wettability and adhesion of nanostructured poly-(p-xylylene) films.
    Boduroglu S; Cetinkaya M; Dressick WJ; Singh A; Demirel MC
    Langmuir; 2007 Nov; 23(23):11391-5. PubMed ID: 17929851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water repellency on a fluorine-containing polyurethane surface: toward understanding the surface self-cleaning effect.
    Wu W; Zhu Q; Qing F; Han CC
    Langmuir; 2009 Jan; 25(1):17-20. PubMed ID: 19053621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.