These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 23181606)

  • 1. Determination of oxidoreductase activity using a high-throughput microplate respiratory measurement.
    Hommes G; Gasser CA; Ammann EM; Corvini PF
    Anal Chem; 2013 Jan; 85(1):283-91. PubMed ID: 23181606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic oxidation of manganese ions catalysed by laccase.
    Gorbacheva M; Morozova O; Shumakovich G; Streltsov A; Shleev S; Yaropolov A
    Bioorg Chem; 2009 Feb; 37(1):1-5. PubMed ID: 18976793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide.
    Scodeller P; Carballo R; Szamocki R; Levin L; Forchiassin F; Calvo EJ
    J Am Chem Soc; 2010 Aug; 132(32):11132-40. PubMed ID: 20698679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.
    Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D
    Enzyme Microb Technol; 2012 Mar; 50(3):181-7. PubMed ID: 22305173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccase activity measurement by FTIR spectral fingerprinting.
    Perna V; Baum A; Ernst HA; Agger JW; Meyer AS
    Enzyme Microb Technol; 2019 Mar; 122():64-73. PubMed ID: 30638509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes.
    Brissos V; Pereira L; Munteanu FD; Cavaco-Paulo A; Martins LO
    Biotechnol J; 2009 Apr; 4(4):558-63. PubMed ID: 19156728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocatalytic cascade oxidation using laccase for pyranose 2-oxidase regeneration.
    Van Hecke W; Salaheddin C; Ludwig R; Dewulf J; Haltrich D; Van Langenhove H
    Bioresour Technol; 2009 Dec; 100(23):5566-73. PubMed ID: 19595589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure/redox potential relationship of simple organic compounds as potential precursors of dyes for laccase-mediated transformation.
    Polak J; Jarosz-Wilkolazka A
    Biotechnol Prog; 2012; 28(1):93-102. PubMed ID: 21990279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Trametes versicolor laccase for the transformation of aqueous phenol.
    Kurniawati S; Nicell JA
    Bioresour Technol; 2008 Nov; 99(16):7825-34. PubMed ID: 18406607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laccase activity in soils: considerations for the measurement of enzyme activity.
    Eichlerová I; Šnajdr J; Baldrian P
    Chemosphere; 2012 Aug; 88(10):1154-60. PubMed ID: 22475148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback mode SECM study of laccase and bilirubin oxidase immobilised in a sol-gel processed silicate film.
    Nogala W; Szot K; Burchardt M; Roelfs F; Rogalski J; Opallo M; Wittstock G
    Analyst; 2010 Aug; 135(8):2051-8. PubMed ID: 20532339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM).
    Ceylan H; Kubilay S; Aktas N; Sahiner N
    Bioresour Technol; 2008 Apr; 99(6):2025-31. PubMed ID: 18053708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor.
    Gallaway J; Wheeldon I; Rincon R; Atanassov P; Banta S; Barton SC
    Biosens Bioelectron; 2008 Mar; 23(8):1229-35. PubMed ID: 18096378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of the catalytic activity of [Mn(II)(bpy)2Cl2] and [Mn2(III/IV)(mu-O)2(bpy)4](ClO4)3 in the H2O2 induced oxidation of organic dyes in carbonate buffered aqueous solution.
    Rothbart S; Ember E; van Eldik R
    Dalton Trans; 2010 Apr; 39(13):3264-72. PubMed ID: 20449456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer--a biomimetic approach.
    Piera J; Bäckvall JE
    Angew Chem Int Ed Engl; 2008; 47(19):3506-23. PubMed ID: 18383499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular electron transfer in laccases.
    Farver O; Wherland S; Koroleva O; Loginov DS; Pecht I
    FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tannic acid interferes with the commonly used laccase-detection assay based on ABTS as the substrate.
    Terrón MC; López-Fernández M; Carbajo JM; Junca H; Téllez A; Yagüe S; Arana-Cuenca A; González T; González AE
    Biochimie; 2004 Aug; 86(8):519-22. PubMed ID: 15388228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.