These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23181752)

  • 1. Characterization of the bipartite degron that regulates ubiquitin-independent degradation of thymidylate synthase.
    Barbour KW; Xing YY; Peña EA; Berger FG
    Biosci Rep; 2013 Jan; 33(1):165-73. PubMed ID: 23181752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional dissection of the N-terminal degron of human thymidylate synthase.
    Melo SP; Yoshida A; Berger FG
    Biochem J; 2010 Nov; 432(1):217-26. PubMed ID: 20815815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation between an intrinsically disordered region and a helical segment is required for ubiquitin-independent degradation by the proteasome.
    Melo SP; Barbour KW; Berger FG
    J Biol Chem; 2011 Oct; 286(42):36559-67. PubMed ID: 21878626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The intrinsically disordered N-terminal domain of thymidylate synthase targets the enzyme to the ubiquitin-independent proteasomal degradation pathway.
    Peña MM; Melo SP; Xing YY; White K; Barbour KW; Berger FG
    J Biol Chem; 2009 Nov; 284(46):31597-607. PubMed ID: 19797058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of N-terminal residues in the ubiquitin-independent degradation of human thymidylate synthase.
    Peña MM; Xing YY; Koli S; Berger FG
    Biochem J; 2006 Feb; 394(Pt 1):355-63. PubMed ID: 16259621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants for the intracellular degradation of human thymidylate synthase.
    Forsthoefel AM; Peña MM; Xing YY; Rafique Z; Berger FG
    Biochemistry; 2004 Feb; 43(7):1972-9. PubMed ID: 14967037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of Destabilization of the Human Thymidylate Synthase (hTS) Dimeric Structure Induced by the Interface Mutation Q62R.
    Pozzi C; Lopresti L; Santucci M; Costi MP; Mangani S
    Biomolecules; 2019 Apr; 9(4):. PubMed ID: 30987202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitin-independent proteasomal degradation.
    Erales J; Coffino P
    Biochim Biophys Acta; 2014 Jan; 1843(1):216-21. PubMed ID: 23684952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and Functional Characterization of the Human Thymidylate Synthase (hTS) Interface Variant R175C, New Perspectives for the Development of hTS Inhibitors.
    Pozzi C; Ferrari S; Luciani R; Costi MP; Mangani S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30959951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states.
    Chen D; Jansson A; Sim D; Larsson A; Nordlund P
    J Biol Chem; 2017 Aug; 292(32):13449-13458. PubMed ID: 28634233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of Val3 in human thymidylate synthase affects its kinetic properties and intracellular stability .
    Huang X; Gibson LM; Bell BJ; Lovelace LL; Peña MM; Berger FG; Berger SH; Lebioda L
    Biochemistry; 2010 Mar; 49(11):2475-82. PubMed ID: 20151707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of mRNA recognition by human thymidylate synthase.
    Brunn ND; Dibrov SM; Kao MB; Ghassemian M; Hermann T
    Biosci Rep; 2014 Dec; 34(6):e00168. PubMed ID: 25423174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ligand binding and conformational switching on intracellular stability of human thymidylate synthase.
    Berger SH; Berger FG; Lebioda L
    Biochim Biophys Acta; 2004 Jan; 1696(1):15-22. PubMed ID: 14726200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Critical amino acids of ornitin decarboxylase degron: the presence and C-terminal arrangement is insufficient for alfa-fetoprotein degradation].
    Morozov AV; Timofeev AV; Morozov VA; Karpov VL
    Mol Biol (Mosk); 2011; 45(3):529-37. PubMed ID: 21790016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.
    Chua NK; Howe V; Jatana N; Thukral L; Brown AJ
    J Biol Chem; 2017 Dec; 292(49):19959-19973. PubMed ID: 28972164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of human thymidylate synthase suggests advantages of chemotherapy with noncompetitive inhibitors.
    Phan J; Steadman DJ; Koli S; Ding WC; Minor W; Dunlap RB; Berger SH; Lebioda L
    J Biol Chem; 2001 Apr; 276(17):14170-7. PubMed ID: 11278511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits.
    Ha SW; Ju D; Xie Y
    Biochem Biophys Res Commun; 2012 Mar; 419(2):226-31. PubMed ID: 22349505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro selection of an RNA sequence that interacts with high affinity with thymidylate synthase.
    Lin X; Mizunuma N; Chen T; Copur SM; Maley GF; Liu J; Maley F; Chu E
    Nucleic Acids Res; 2000 Nov; 28(21):4266-74. PubMed ID: 11058126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron.
    McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2004 Jul; 279(30):31556-67. PubMed ID: 15143058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid substitution analysis of E. coli thymidylate synthase: the study of a highly conserved region at the N-terminus.
    Kim CW; Michaels ML; Miller JH
    Proteins; 1992 Aug; 13(4):352-63. PubMed ID: 1518803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.