BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2318200)

  • 1. Differential scanning calorimetry of lobster haemocyanin.
    Guzmán-Casado M; Parody-Morreale A; Mateo PL; Sánchez-Ruiz JM
    Eur J Biochem; 1990 Feb; 188(1):181-5. PubMed ID: 2318200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin.
    Sánchez-Ruiz JM; López-Lacomba JL; Cortijo M; Mateo PL
    Biochemistry; 1988 Mar; 27(5):1648-52. PubMed ID: 3365417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study on the irreversible thermal denaturation of yeast phosphoglycerate kinase.
    Galisteo ML; Mateo PL; Sanchez-Ruiz JM
    Biochemistry; 1991 Feb; 30(8):2061-6. PubMed ID: 1998668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential-scanning-calorimetric study of the irreversible thermal denaturation of 8 kDa cytotoxin from the sea anemone Radianthus macrodactylus.
    Zhadan GG; Shnyrov VL
    Biochem J; 1994 May; 299 ( Pt 3)(Pt 3):731-3. PubMed ID: 7910735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics.
    Weijers M; Barneveld PA; Cohen Stuart MA; Visschers RW
    Protein Sci; 2003 Dec; 12(12):2693-703. PubMed ID: 14627731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential scanning calorimetric study of the thermal unfolding of beta-lactamase I from Bacillus cereus.
    Arriaga P; Menéndez M; Villacorta JM; Laynez J
    Biochemistry; 1992 Jul; 31(28):6603-7. PubMed ID: 1633173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lobster haemocyanin. Influence of acclimatization on subunit composition and functional properties.
    Condò SG; Pellegrini MG; Corda M; Sanna MT; Cau A; Giardina B
    Biochem J; 1991 Jul; 277 ( Pt 2)(Pt 2):419-21. PubMed ID: 1859369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Zn2+ on the thermal denaturation of carboxypeptidase B.
    Conejero-Lara F; Mateo PL; Aviles FX; Sanchez-Ruiz JM
    Biochemistry; 1991 Feb; 30(8):2067-72. PubMed ID: 1998669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential scanning calorimetry of the irreversible denaturation of Escherichia coli glucosamine-6-phosphate deaminase.
    Hernández-Arana A; Rojo-Domínguez A; Altamirano MM; Calcagno ML
    Biochemistry; 1993 Apr; 32(14):3644-8. PubMed ID: 8466906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability parameters for one-step mechanism of irreversible protein denaturation: a method based on nonlinear regression of calorimetric peaks with nonzero deltaCp.
    Arroyo-Reyna A; Tello-Solís SR; Rojo-Domínguez A
    Anal Biochem; 2004 May; 328(2):123-30. PubMed ID: 15113687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic study on the irreversible thermal denaturation of Schistosoma japonicum glutathione S-transferase.
    Quesada-Soriano I; García-Maroto F; García-Fuentes L
    Biochim Biophys Acta; 2006 May; 1764(5):979-84. PubMed ID: 16630751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential scanning calorimetry of the irreversible thermal denaturation of cellulase from Streptomyces halstedii JM8.
    Garda-Salas AL; Santamaria RI; Marcos MJ; Zhadan GG; Villar E; Shnyrov VL
    Biochem Mol Biol Int; 1996 Feb; 38(1):161-70. PubMed ID: 8932530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irreversible thermal denaturation of Torpedo californica acetylcholinesterase.
    Kreimer DI; Shnyrov VL; Villar E; Silman I; Weiner L
    Protein Sci; 1995 Nov; 4(11):2349-57. PubMed ID: 8563632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and kinetic stability of penicillin acylase from Escherichia coli.
    Grinberg VY; Burova TV; Grinberg NV; Shcherbakova TA; Guranda DT; Chilov GG; Svedas VK
    Biochim Biophys Acta; 2008 May; 1784(5):736-46. PubMed ID: 18314015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isothermal acid-titration calorimetry for evaluating the pH dependence of protein stability.
    Nakamura S; Kidokoro S
    Biophys Chem; 2004 May; 109(2):229-49. PubMed ID: 15110942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.
    Goyal M; Chaudhuri TK; Kuwajima K
    PLoS One; 2014; 9(12):e115877. PubMed ID: 25548918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential scanning calorimetry study.
    Thórólfsson M; Ibarra-Molero B; Fojan P; Petersen SB; Sanchez-Ruiz JM; Martínez A
    Biochemistry; 2002 Jun; 41(24):7573-85. PubMed ID: 12056888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretation of DSC data on protein denaturation complicated by kinetic and irreversible effects.
    Grinberg VY; Burova TV; Haertlé T; Tolstoguzov VB
    J Biotechnol; 2000 May; 79(3):269-80. PubMed ID: 10867187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study of the thermal denaturation of G actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy.
    Le Bihan T; Gicquaud C
    Biochem Biophys Res Commun; 1993 Aug; 194(3):1065-73. PubMed ID: 8352763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in the stability of avidin produced by binding of biotin. A differential scanning calorimetric study of denaturation by heat.
    Donovan JW; Ross KD
    Biochemistry; 1973 Jan; 12(3):512-7. PubMed ID: 4683493
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.