These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23182631)

  • 1. The role of motor neuron drive in muscle fatigue.
    Ranieri F; Di Lazzaro V
    Neuromuscul Disord; 2012 Dec; 22 Suppl 3():S157-61. PubMed ID: 23182631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue.
    Gruet M; Temesi J; Rupp T; Levy P; Millet GY; Verges S
    Neuroscience; 2013 Feb; 231():384-99. PubMed ID: 23131709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a supraspinal contribution to human muscle fatigue.
    Taylor JL; Todd G; Gandevia SC
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):400-5. PubMed ID: 16620309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in presumed motor cortical activity during fatiguing muscle contraction in humans.
    Seifert T; Petersen NC
    Acta Physiol (Oxf); 2010 Jul; 199(3):317-26. PubMed ID: 20136794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions.
    Taylor JL; Gandevia SC
    J Appl Physiol (1985); 2008 Feb; 104(2):542-50. PubMed ID: 18032577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased probability of repetitive spinal motoneuron activation by transcranial magnetic stimulation after muscle fatigue in healthy subjects.
    Andersen B; Felding UA; Krarup C
    J Appl Physiol (1985); 2012 Mar; 112(5):832-40. PubMed ID: 22174399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural control in human muscle fatigue: changes in muscle afferents, motoneurones and motor cortical drive [corrected].
    Gandevia SC
    Acta Physiol Scand; 1998 Mar; 162(3):275-83. PubMed ID: 9578373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote facilitation of supraspinal motor excitability depends on the level of effort.
    Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T
    Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in muscle afferents, motoneurons and motor drive during muscle fatigue.
    Taylor JL; Butler JE; Gandevia SC
    Eur J Appl Physiol; 2000 Oct; 83(2-3):106-15. PubMed ID: 11104051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between muscle pain and fatigue.
    Mastaglia FL
    Neuromuscul Disord; 2012 Dec; 22 Suppl 3():S178-80. PubMed ID: 23182635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-exercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation: a study in multiple sclerosis.
    Perretti A; Balbi P; Orefice G; Trojano L; Marcantonio L; Brescia-Morra V; Ascione S; Manganelli F; Conte G; Santoro L
    Clin Neurophysiol; 2004 Sep; 115(9):2128-33. PubMed ID: 15294215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions.
    Löscher WN; Nordlund MM
    Muscle Nerve; 2002 Jun; 25(6):864-72. PubMed ID: 12115976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal and supraspinal factors in human muscle fatigue.
    Gandevia SC
    Physiol Rev; 2001 Oct; 81(4):1725-89. PubMed ID: 11581501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles.
    Sidhu SK; Bentley DJ; Carroll TJ
    J Appl Physiol (1985); 2009 Feb; 106(2):556-65. PubMed ID: 19056999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreases in motor unit firing rate during sustained maximal-effort contractions in young and older adults.
    Rubinstein S; Kamen G
    J Electromyogr Kinesiol; 2005 Dec; 15(6):536-43. PubMed ID: 16054395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A; Matsunaga K; Tanaka N; Rothwell JC
    Clin Neurophysiol; 2006 Apr; 117(4):864-70. PubMed ID: 16495147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles.
    Alexandre F; Derosiere G; Papaiordanidou M; Billot M; Varray A
    Acta Physiol (Oxf); 2015 May; 214(1):124-34. PubMed ID: 25740017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas.
    Cogiamanian F; Marceglia S; Ardolino G; Barbieri S; Priori A
    Eur J Neurosci; 2007 Jul; 26(1):242-9. PubMed ID: 17614951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.