These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23182903)

  • 1. Modeling the dynamic flow-fiber interaction for microscopic biofluid systems.
    Yin X; Zhang J
    J Biomech; 2013 Jan; 46(2):314-8. PubMed ID: 23182903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows.
    Zhang J; Johnson PC; Popel AS
    Phys Biol; 2007 Nov; 4(4):285-95. PubMed ID: 18185006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic resonance on the transverse displacement of swimmers in an oscillatory shear flow.
    Guzmán-Lastra F; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):037301. PubMed ID: 23031055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional hydrodynamic lattice-gas simulations of ternary amphiphilic fluids under shear flow.
    Love PJ; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):357-66. PubMed ID: 16214685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model.
    Chin J; Boek ES; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):547-58. PubMed ID: 16214694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling.
    Pawaskar SS; Fisher J; Jin Z
    J Biomech Eng; 2010 Mar; 132(3):031001. PubMed ID: 20459189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of swimming of a flexible filament using the generalized lattice-spring lattice-Boltzmann method.
    Wu TH; Guo RS; He GW; Liu YM; Qi D
    J Theor Biol; 2014 May; 349():1-11. PubMed ID: 24486231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a lattice Boltzmann-immersed boundary method for fluid-filament dynamics and flow sensing.
    O Connor J; Revell A; Mandal P; Day P
    J Biomech; 2016 Jul; 49(11):2143-2151. PubMed ID: 26718062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice Boltzmann simulations of binary fluid flow through porous media.
    Tölke J; Krafczyk M; Schulz M; Rank E
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D computational modeling and simulation of leukocyte rolling adhesion and deformation.
    Pappu V; Bagchi P
    Comput Biol Med; 2008 Jun; 38(6):738-53. PubMed ID: 18499093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale modeling of circular and elliptical particles in laminar shear flow.
    Filipovic N; Isailović V; Dukić T; Ferrari M; Kojic M
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):50-3. PubMed ID: 21878403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.
    Castillo-Tejas J; Alvarado JF; González-Alatorre G; Luna-Bárcenas G; Sanchez IC; Macias-Salinas R; Manero O
    J Chem Phys; 2005 Aug; 123(5):054907. PubMed ID: 16108693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment.
    Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R
    Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.
    Lappa M
    Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational study of leukocyte adhesion and its effect on flow pattern in microvessels.
    Pappu V; Doddi SK; Bagchi P
    J Theor Biol; 2008 Sep; 254(2):483-98. PubMed ID: 18597788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical and computational scaling issues in lattice Boltzmann simulations of binary fluid mixtures.
    Cates ME; Desplat JC; Stansell P; Wagner AJ; Stratford K; Adhikari R; Pagonabarraga I
    Philos Trans A Math Phys Eng Sci; 2005 Aug; 363(1833):1917-35. PubMed ID: 16099757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
    Bhavsar SS; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method.
    Tan J; Keller W; Sohrabi S; Yang J; Liu Y
    Nanomaterials (Basel); 2016 Feb; 6(2):. PubMed ID: 28344287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalga propels along vorticity direction in a shear flow.
    Chengala A; Hondzo M; Sheng J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052704. PubMed ID: 23767563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.