BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23183023)

  • 21. [Determination of p-Phenylene diamine in workplace air by elution solution-liquid chromatography].
    Liu MM; Liu BF; Zhang J; Liu J; Zhang M; Zhao SL
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2018 Sep; 36(9):700-703. PubMed ID: 30419683
    [No Abstract]   [Full Text] [Related]  

  • 22. [Determination of N-isopropylaniline in workplace air by high-performance liquid chromatography].
    Tan Q; Zhang Z; Bai H
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2015 Apr; 33(4):294-6. PubMed ID: 26506783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An approach for estimating workplace exposure to o-toluidine, aniline, and nitrobenzene.
    Pendergrass SM
    Am Ind Hyg Assoc J; 1994 Aug; 55(8):733-7. PubMed ID: 7942510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occupational exposure to cotton dust in cottonseed oil mills.
    Tabak S; Broday DM; Tabak I; Manor G
    Appl Occup Environ Hyg; 2002 Feb; 17(2):121-30. PubMed ID: 11843198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compact semi-automatic incident sampler for personal monitoring of volatile organic compounds in occupational air.
    Solbu K; Hersson M; Thorud S; Lundanes E; Nilsen T; Synnes O; Ellingsen D; Molander P
    J Environ Monit; 2010 May; 12(5):1195-202. PubMed ID: 21491688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new method for the determination of 2,2'-dichloro-4,4'-methylenedianiline in workplace air samples by HPLC-DAD.
    Jeżewska A; Buszewski B
    Toxicol Mech Methods; 2011 Sep; 21(7):554-60. PubMed ID: 21473712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of perfluorocarboxylic acids in air.
    Miller J; Flaherty J; Wille R; Buck W; Morandi F; Isemura T
    J Occup Environ Hyg; 2007 Mar; 4(3):174-83. PubMed ID: 17237023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [A new method for the determination of naphatylamines in workplace air for occupational exposure assessment].
    Jeżewska A; Kondej D; Woźnica A
    Med Pr; 2021 Apr; 72(2):145-154. PubMed ID: 33783437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a secondary lead smelter/solder manufacturer.
    Harper M; Pacolay B
    J Environ Monit; 2006 Jan; 8(1):140-6. PubMed ID: 16395471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Membrane Hollow Fiber for Determination of Maleic Anhydride in Ambient Air as a Field Sampler.
    Partovi E; Bahrami A; AfKhami A; Ghorbani Shahna F; Ghamari F; Farhadian M
    Ann Work Expo Health; 2019 Aug; 63(7):797-805. PubMed ID: 31278410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of capsaicin and dihydrocapsaicin in air in a pickle and pepper processing plant.
    Tucker SP
    AIHAJ; 2001; 62(1):45-8. PubMed ID: 11261419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laboratory study of selected personal inhalable aerosol samplers.
    Görner P; Simon X; Wrobel R; Kauffer E; Witschger O
    Ann Occup Hyg; 2010 Mar; 54(2):165-87. PubMed ID: 20147627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of air samplers for determination of isocyanic acid and applicability for work environment exposure assessment.
    Jankowski MJ; Olsen R; Thomassen Y; Molander P
    Environ Sci Process Impacts; 2017 Aug; 19(8):1075-1085. PubMed ID: 28762425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a sampling and analytical method for 2,2-dichloro-1,1,1-trifluoroethane in workplace air.
    Shin YC; Yi GY; Kim Y; Paik NW
    AIHA J (Fairfax, Va); 2002; 63(6):715-20. PubMed ID: 12570079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of hydroquinone in air by high performance liquid chromatography.
    Scobbie E; Groves JA
    Ann Occup Hyg; 1999 Feb; 43(2):131-41. PubMed ID: 10206042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of exposure to oak wood dust using gallic acid as a chemical marker.
    Carrieri M; Scapellato ML; Salamon F; Gori G; Trevisan A; Bartolucci GB
    Int Arch Occup Environ Health; 2016 Jan; 89(1):115-21. PubMed ID: 25940655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analytical techniques and method validation for the measurement of selected semivolatile and nonvolatile organofluorochemicals in air.
    Reagen WK; Lindstrom KR; Thompson KL; Flaherty JM
    J Occup Environ Hyg; 2004 Sep; 1(9):559-69. PubMed ID: 15559328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 1: sampling hydrochloric acid (HCl) and nitric acid (HNO₃) from a test gas atmosphere.
    Howe A; Musgrove D; Breuer D; Gusbeth K; Moritz A; Demange M; Oury V; Rousset D; Dorotte M
    J Occup Environ Hyg; 2011 Aug; 8(8):492-502. PubMed ID: 21756139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the dialdehyde glyoxal in workroom air-development of personal sampling methodology.
    Olsen R; Thorud S; Hersson M; Ovrebø S; Lundanes E; Greibrokk T; Ellingsen DG; Thomassen Y; Molander P
    J Environ Monit; 2007 Jul; 9(7):687-94. PubMed ID: 17607389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An approach to area sampling and analysis for total isocyanates in workplace air.
    Key-Schwartz RJ; Tucker SP
    Am Ind Hyg Assoc J; 1999; 60(2):200-7. PubMed ID: 10222570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.