These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23183126)

  • 1. Improved gas sensing activity in structurally defected bilayer graphene.
    Hajati Y; Blom T; Jafri SH; Haldar S; Bhandary S; Shoushtari MZ; Eriksson O; Sanyal B; Leifer K
    Nanotechnology; 2012 Dec; 23(50):505501. PubMed ID: 23183126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-dimensional extended lines of divacancy defects in graphene.
    Botello-Méndez AR; Declerck X; Terrones M; Terrones H; Charlier JC
    Nanoscale; 2011 Jul; 3(7):2868-72. PubMed ID: 21321755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.
    Huang P; Jing L; Zhu H; Gao X
    Acc Chem Res; 2013 Jan; 46(1):43-52. PubMed ID: 23143937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing propensity of a defected graphane sheet towards CO, H2O and NO2.
    Hussain T; Panigrahi P; Ahuja R
    Nanotechnology; 2014 Aug; 25(32):325501. PubMed ID: 25060926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy.
    Jiang QG; Ao ZM; Zheng WT; Li S; Jiang Q
    Phys Chem Chem Phys; 2013 Dec; 15(48):21016-22. PubMed ID: 24217016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of a Ga+ focused ion beam to modify graphene for device applications.
    Archanjo BS; Barboza AP; Neves BR; Malard LM; Ferreira EH; Brant JC; Alves ES; Plentz F; Carozo V; Fragneaud B; Maciel IO; Almeida CM; Jorio A; Achete CA
    Nanotechnology; 2012 Jun; 23(25):255305. PubMed ID: 22652838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Stone-Wales defect on the interactions between NH3, NO2 and graphene.
    Zhang YH; Zhou KG; Xie KF; Gou XC; Zeng J; Zhang HL; Peng Y
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7347-50. PubMed ID: 21137931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors.
    Zhou M; Lu YH; Cai YQ; Zhang C; Feng YP
    Nanotechnology; 2011 Sep; 22(38):385502. PubMed ID: 21869463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Defects on Regioselectivity of Nano Pristine Graphene.
    Kudur Jayaprakash G; Casillas N; Astudillo-Sánchez PD; Flores-Moreno R
    J Phys Chem A; 2016 Nov; 120(45):9101-9108. PubMed ID: 27797503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, electronic and gas-sensing properties towards H2 and CO of transparent, large-area, low-layer graphene.
    Kayhan E; Prasad RM; Gurlo A; Yilmazoglu O; Engstler J; Ionescu E; Yoon S; Weidenkaff A; Schneider JJ
    Chemistry; 2012 Nov; 18(47):14996-5003. PubMed ID: 23032996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradual changes in electronic properties from graphene to graphite: first-principles calculations.
    Alzahrani AZ; Srivastava GP
    J Phys Condens Matter; 2009 Dec; 21(49):495503. PubMed ID: 21836199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms.
    Zhang YH; Zhou KG; Xie KF; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2010 Feb; 21(6):065201. PubMed ID: 20057033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene.
    Zhong JH; Zhang J; Jin X; Liu JY; Li Q; Li MH; Cai W; Wu DY; Zhan D; Ren B
    J Am Chem Soc; 2014 Nov; 136(47):16609-17. PubMed ID: 25350471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Industrial graphene metrology.
    Kyle JR; Ozkan CS; Ozkan M
    Nanoscale; 2012 Jul; 4(13):3807-19. PubMed ID: 22538861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of gas adsorption for pristine, defective and functionalized graphene.
    You Y; Deng J; Tan X; Gorjizadeh N; Yoshimura M; Smith SC; Sahajwalla V; Joshi RK
    Phys Chem Chem Phys; 2017 Feb; 19(8):6051-6056. PubMed ID: 28191577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the physisorption of water on graphene: a CCSD(T) study.
    Voloshina E; Usvyat D; Schütz M; Dedkov Y; Paulus B
    Phys Chem Chem Phys; 2011 Jul; 13(25):12041-7. PubMed ID: 21625710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lubrication of Stone-Wales transformations in graphene by hydrogen and hydroxyl functional groups.
    Nascimento AJ; Nunes RW
    Nanotechnology; 2013 Nov; 24(43):435707. PubMed ID: 24107511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.