BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23183145)

  • 1. Carbon dioxide capture capacity of sodium hydroxide aqueous solution.
    Yoo M; Han SJ; Wee JH
    J Environ Manage; 2013 Jan; 114():512-9. PubMed ID: 23183145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of carbon dioxide by a spray dryer.
    Chen JC; Fang GC; Tang JT; Liu LP
    Chemosphere; 2005 Mar; 59(1):99-105. PubMed ID: 15698650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide capture from atmospheric air using sodium hydroxide spray.
    Stolaroff JK; Keith DW; Lowry GV
    Environ Sci Technol; 2008 Apr; 42(8):2728-35. PubMed ID: 18497115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas.
    Krischan J; Makaruk A; Harasek M
    J Hazard Mater; 2012 May; 215-216():49-56. PubMed ID: 22440540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air.
    Choi S; Drese JH; Eisenberger PM; Jones CW
    Environ Sci Technol; 2011 Mar; 45(6):2420-7. PubMed ID: 21323309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption of carbon dioxide by raw and treated dye-bath effluents.
    Georgiou D; Petrolekas PD; Hatzixanthis S; Aivasidis A
    J Hazard Mater; 2007 Jun; 144(1-2):369-76. PubMed ID: 17118534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.
    Tian S; Jiang J
    Environ Sci Technol; 2012 Dec; 46(24):13545-51. PubMed ID: 23181908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues.
    Baciocchi R; Carnevale E; Costa G; Gavasci R; Lombardi L; Olivieri T; Zanchi L; Zingaretti D
    Waste Manag; 2013 Dec; 33(12):2694-705. PubMed ID: 24045173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ditetraalkylammonium amino acid ionic liquids as CO₂ absorbents of high capacity.
    Ma JW; Zhou Z; Zhang F; Fang CG; Wu YT; Zhang ZB; Li AM
    Environ Sci Technol; 2011 Dec; 45(24):10627-33. PubMed ID: 22066493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture.
    Liu W; Low NW; Feng B; Wang G; Diniz da Costa JC
    Environ Sci Technol; 2010 Jan; 44(2):841-7. PubMed ID: 20030311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NaOH-modified ceramic honeycomb with enhanced formaldehyde adsorption and removal performance.
    Yu J; Li X; Xu Z; Xiao W
    Environ Sci Technol; 2013 Sep; 47(17):9928-33. PubMed ID: 23895134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity.
    Chang PH; Chang YP; Chen SY; Yu CT; Chyou YP
    ChemSusChem; 2011 Dec; 4(12):1844-51. PubMed ID: 22072595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor.
    Deshwal BR; Jin DS; Lee SH; Moon SH; Jung JH; Lee HK
    J Hazard Mater; 2008 Feb; 150(3):649-55. PubMed ID: 17583424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide.
    Oh SY; Yoo DI; Shin Y; Seo G
    Carbohydr Res; 2005 Feb; 340(3):417-28. PubMed ID: 15680597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of high-temperature steam on the reactivity of CaO sorbent for CO₂ capture.
    Donat F; Florin NH; Anthony EJ; Fennell PS
    Environ Sci Technol; 2012 Jan; 46(2):1262-9. PubMed ID: 22191682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae.
    Hsueh HT; Chu H; Yu ST
    Chemosphere; 2007 Jan; 66(5):878-86. PubMed ID: 16860839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent.
    Pacciani R; Torres J; Solsona P; Coe C; Quinn R; Hufton J; Golden T; Vega LF
    Environ Sci Technol; 2011 Aug; 45(16):7083-8. PubMed ID: 21756001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution.
    Wu FC; Tseng RL
    J Hazard Mater; 2008 Apr; 152(3):1256-67. PubMed ID: 17826897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of four carbon dioxide absorbents in experimental and clinical settings.
    Yamakage M; Takahashi K; Takahashi M; Satoh JI; Namiki A
    Anaesthesia; 2009 Mar; 64(3):287-92. PubMed ID: 19302642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of hydrogels from polyallylamine with carbon dioxide as gellant: development of reversible CO(2) absorbent.
    Nagai D; Suzuki A; Kuribayashi T
    Macromol Rapid Commun; 2011 Feb; 32(4):404-10. PubMed ID: 21433191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.