These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 23183224)
41. Evaluation of the artificial sweetener sucralose as a sanitary wastewater tracer in Narragansett Bay, Rhode Island, USA. Cantwell MG; Katz DR; Sullivan J; Kuhn A Mar Pollut Bull; 2019 Sep; 146():711-717. PubMed ID: 31426213 [TBL] [Abstract][Full Text] [Related]
42. Fate of triclosan in agricultural soils after biosolid applications. Lozano N; Rice CP; Ramirez M; Torrents A Chemosphere; 2010 Feb; 78(6):760-6. PubMed ID: 19932914 [TBL] [Abstract][Full Text] [Related]
43. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chen X; Nielsen JL; Furgal K; Liu Y; Lolas IB; Bester K Chemosphere; 2011 Jul; 84(4):452-6. PubMed ID: 21507452 [TBL] [Abstract][Full Text] [Related]
44. Wastewater treatment plants (WWTPs) as a source of sediment contamination by toxic organic pollutants and fecal sterols in a semi-enclosed bay in Korea. Moon HB; Yoon SP; Jung RH; Choi M Chemosphere; 2008 Oct; 73(6):880-9. PubMed ID: 18727999 [TBL] [Abstract][Full Text] [Related]
45. Occurrence and fate of triclosan and triclocarban in a subtropical river and its estuary. Lv M; Sun Q; Xu H; Lin L; Chen M; Yu CP Mar Pollut Bull; 2014 Nov; 88(1-2):383-8. PubMed ID: 25227953 [TBL] [Abstract][Full Text] [Related]
46. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: comparison with fecal pollution. Choi M; Furlong ET; Moon HB; Yu J; Choi HG Chemosphere; 2011 Nov; 85(8):1406-13. PubMed ID: 21890169 [TBL] [Abstract][Full Text] [Related]
47. Triclosan alterations of estuarine phytoplankton community structure. Pinckney JL; Thompson L; Hylton S Mar Pollut Bull; 2017 Jun; 119(1):162-168. PubMed ID: 28363428 [TBL] [Abstract][Full Text] [Related]
48. Evidence of methylmercury production and modification of the microbial community structure in estuary sediments contaminated with wastewater treatment plant effluents. Ramond JB; Petit F; Quillet L; Ouddane B; Berthe T Mar Pollut Bull; 2011 May; 62(5):1073-80. PubMed ID: 21429530 [TBL] [Abstract][Full Text] [Related]
49. Retrospective study of triclosan and methyl-triclosan residues in fish and suspended particulate matter: results from the German Environmental Specimen Bank. Rüdel H; Böhmer W; Müller M; Fliedner A; Ricking M; Teubner D; Schröter-Kermani C Chemosphere; 2013 Jun; 91(11):1517-24. PubMed ID: 23336923 [TBL] [Abstract][Full Text] [Related]
50. Distribution of mercury and organic matter in particle-size classes in sediments contaminated by a waste water treatment plant: Vidy Bay, Lake Geneva, Switzerland. Bravo AG; Bouchet S; Amouroux D; Poté J; Dominik J J Environ Monit; 2011 Apr; 13(4):974-82. PubMed ID: 21327246 [TBL] [Abstract][Full Text] [Related]
51. Occurrence and distribution of triclosan in the German Bight (North Sea). Xie Z; Ebinghaus R; Flöser G; Caba A; Ruck W Environ Pollut; 2008 Dec; 156(3):1190-5. PubMed ID: 18490092 [TBL] [Abstract][Full Text] [Related]
52. Triclosan in waste and surface waters from the upper Detroit River by liquid chromatography-electrospray-tandem quadrupole mass spectrometry. Hua W; Bennett ER; Letcher RJ Environ Int; 2005 Jul; 31(5):621-30. PubMed ID: 15910958 [TBL] [Abstract][Full Text] [Related]
53. GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. Ramaswamy BR; Shanmugam G; Velu G; Rengarajan B; Larsson DG J Hazard Mater; 2011 Feb; 186(2-3):1586-93. PubMed ID: 21216531 [TBL] [Abstract][Full Text] [Related]
54. Development and use of polyethylene passive samplers to detect triclosans and alkylphenols in an urban estuary. Sacks VP; Lohmann R Environ Sci Technol; 2011 Mar; 45(6):2270-7. PubMed ID: 21341696 [TBL] [Abstract][Full Text] [Related]
55. The use of vintage surficial sediment data and sedimentary cores to determine past and future trends in estuarine metal contamination (Sydney estuary, Australia). Birch GF; Chang CH; Lee JH; Churchill LJ Sci Total Environ; 2013 Jun; 454-455():542-61. PubMed ID: 23570910 [TBL] [Abstract][Full Text] [Related]
56. A mass budget of polybrominated diphenyl ethers in San Francisco Bay, CA. Oram JJ; McKee LJ; Werme CE; Connor MS; Oros DR; Grace R; Rodigari F Environ Int; 2008 Nov; 34(8):1137-47. PubMed ID: 18514904 [TBL] [Abstract][Full Text] [Related]
57. Fate and effects of triclosan in activated sludge. Federle TW; Kaiser SK; Nuck BA Environ Toxicol Chem; 2002 Jul; 21(7):1330-7. PubMed ID: 12109731 [TBL] [Abstract][Full Text] [Related]
58. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions. He Y; Nie E; Li C; Ye Q; Wang H Environ Pollut; 2017 Jan; 220(Pt A):400-406. PubMed ID: 27692886 [TBL] [Abstract][Full Text] [Related]
59. Contamination and spatial distribution of parabens, their metabolites and antimicrobials in sediment from Korean coastal waters. Lee JW; Lee HK; Moon HB Ecotoxicol Environ Saf; 2019 Sep; 180():185-191. PubMed ID: 31082583 [TBL] [Abstract][Full Text] [Related]
60. Source determination of benzotriazoles in sediment cores from two urban estuaries on the Atlantic Coast of the United States. Cantwell MG; Sullivan JC; Katz DR; Burgess RM; Bradford Hubeny J; King J Mar Pollut Bull; 2015 Dec; 101(1):208-218. PubMed ID: 26561444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]