These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 23183343)

  • 1. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems.
    Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y
    J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments.
    Wang H; Wang JL
    J Hazard Mater; 2008 Jun; 154(1-3):44-50. PubMed ID: 17996367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Self-degradation" of 2-chlorophenol in a sequential cathode-anode cascade mode bioelectrochemical system.
    Yang K; Zhao Y; Zhou X; Wang Q; Pedersen TH; Jia Z; Cabrera J; Ji M
    Water Res; 2021 Nov; 206():117740. PubMed ID: 34688096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved dechlorination and mineralization of 4-chlorophenol in a sequential biocathode-bioanode bioelectrochemical system with mixed photosynthetic bacteria.
    Kong F; Wang A; Ren HY; Huang L; Xu M; Tao H
    Bioresour Technol; 2014 Apr; 158():32-8. PubMed ID: 24583212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete dechlorination of 2,4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode.
    Sun Z; Wei X; Han Y; Tong S; Hu X
    J Hazard Mater; 2013 Jan; 244-245():287-94. PubMed ID: 23270952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol.
    Xu F; Deng S; Xu J; Zhang W; Wu M; Wang B; Huang J; Yu G
    Environ Sci Technol; 2012 Apr; 46(8):4576-82. PubMed ID: 22435541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment.
    Zhu X; Logan BE
    J Hazard Mater; 2013 May; 252-253():198-203. PubMed ID: 23523911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems.
    Werner CM; Hoppe-Jones C; Saikaly PE; Logan BE; Amy GL
    Water Res; 2015 Apr; 73():56-67. PubMed ID: 25644628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards practical implementation of bioelectrochemical wastewater treatment.
    Rozendal RA; Hamelers HV; Rabaey K; Keller J; Buisman CJ
    Trends Biotechnol; 2008 Aug; 26(8):450-9. PubMed ID: 18585807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on electrochemical 4-chlorophenol degradation in different diaphragm systems with combined reduction and oxidation properties.
    Liu SL; Wang H; Bian ZY
    Water Sci Technol; 2015; 71(1):126-30. PubMed ID: 25607679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dechlorination by combined electrochemical reduction and oxidation.
    Cong YQ; Wu ZC; Tan TE
    J Zhejiang Univ Sci B; 2005 Jun; 6(6):563-8. PubMed ID: 15909345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges.
    Zhang Y; Angelidaki I
    Water Res; 2014 Jun; 56():11-25. PubMed ID: 24631941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradability of chlorophenol wastewater enhanced by solar photo-Fenton process.
    Kuo WS; Lin IT
    Water Sci Technol; 2009; 59(5):973-8. PubMed ID: 19273896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes.
    Moreno L; Nemati M; Predicala B
    Environ Technol; 2018 Jan; 39(2):144-156. PubMed ID: 28278769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Reductive dechlorination of 4-chlorophenol using nanosacle iron].
    Cheng R; Wang JL; Zhang WX
    Huan Jing Ke Xue; 2007 Mar; 28(3):578-83. PubMed ID: 17633636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Reductive degradation of chlorophenols in aqueous solution by gamma irradiation].
    Peng YX; He SJ; Gong WQ; Wang JL
    Huan Jing Ke Xue; 2013 Apr; 34(4):1411-5. PubMed ID: 23798122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system.
    Miran W; Nawaz M; Jang J; Lee DS
    Water Res; 2017 Jun; 117():198-206. PubMed ID: 28399481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium (II) removal mechanisms in microbial electrolysis cells.
    Colantonio N; Kim Y
    J Hazard Mater; 2016 Jul; 311():134-41. PubMed ID: 26970043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation.
    Tao HC; Li W; Liang M; Xu N; Ni JR; Wu WM
    Bioresour Technol; 2011 Apr; 102(7):4774-8. PubMed ID: 21320773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiently "pumping out" value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives.
    Zou S; He Z
    Water Res; 2018 Mar; 131():62-73. PubMed ID: 29274548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.