These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23183587)

  • 1. Limits of metastability in amorphous ices: 2H-NMR relaxation.
    Löw F; Amann-Winkel K; Geil B; Loerting T; Wittich C; Fujara F
    Phys Chem Chem Phys; 2013 Jan; 15(2):576-80. PubMed ID: 23183587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limits of metastability in amorphous ices: the neutron scattering Debye-Waller factor.
    Amann-Winkel K; Löw F; Handle PH; Knoll W; Peters J; Geil B; Fujara F; Loerting T
    Phys Chem Chem Phys; 2012 Dec; 14(47):16386-91. PubMed ID: 23132426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deuteron spin lattice relaxation in amorphous ices.
    Scheuermann M; Geil B; Winkel K; Fujara F
    J Chem Phys; 2006 Jun; 124(22):224503. PubMed ID: 16784294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversibility and isotope effect of the calorimetric glass --> liquid transition of low-density amorphous ice.
    Elsaesser MS; Winkel K; Mayer E; Loerting T
    Phys Chem Chem Phys; 2010 Jan; 12(3):708-12. PubMed ID: 20066356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structures and hydrogen bond network of high-density and very high-density amorphous ices.
    He C; Lian JS; Jiang Q
    J Phys Chem B; 2005 Oct; 109(42):19893-6. PubMed ID: 16853572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation and growth of crystalline ices from amorphous ices.
    Tonauer CM; Fidler LR; Giebelmann J; Yamashita K; Loerting T
    J Chem Phys; 2023 Apr; 158(14):141001. PubMed ID: 37061482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase diagram of amorphous solid water: low-density, high-density, and very-high-density amorphous ices.
    Giovambattista N; Stanley HE; Sciortino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031510. PubMed ID: 16241447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the structure of amorphous ice: from low-density amorphous through high-density amorphous to very high-density amorphous ice.
    Martonák R; Donadio D; Parrinello M
    J Chem Phys; 2005 Apr; 122(13):134501. PubMed ID: 15847475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices.
    Andersson O
    J Chem Phys; 2018 Sep; 149(12):124506. PubMed ID: 30278676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure amorphized ices--an atomistic perspective.
    Tse JS; Klug DD
    Phys Chem Chem Phys; 2012 Jun; 14(23):8255-63. PubMed ID: 22584826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density amorphous ice: nucleation of nanosized low-density amorphous ice.
    Tonauer CM; Seidl-Nigsch M; Loerting T
    J Phys Condens Matter; 2018 Jan; 30(3):034002. PubMed ID: 29189205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa.
    Handle PH; Loerting T
    J Chem Phys; 2018 Mar; 148(12):124508. PubMed ID: 29604853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amorphous and crystalline ices studied by dielectric spectroscopy.
    Plaga LJ; Raidt A; Fuentes Landete V; Amann-Winkel K; Massani B; Gasser TM; Gainaru C; Loerting T; Böhmer R
    J Chem Phys; 2019 Jun; 150(24):244501. PubMed ID: 31255070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport coefficients for liquid and glassy water computed from a harmonic aqueous glass.
    Yu X; Leitner DM
    J Chem Phys; 2005 Sep; 123(10):104503. PubMed ID: 16178606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-slow dynamics in low density amorphous ice revealed by deuteron NMR: indication of a glass transition.
    Löw F; Amann-Winkel K; Loerting T; Fujara F; Geil B
    Phys Chem Chem Phys; 2013 Jun; 15(23):9308-14. PubMed ID: 23660938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryoflotation: densities of amorphous and crystalline ices.
    Loerting T; Bauer M; Kohl I; Watschinger K; Winkel K; Mayer E
    J Phys Chem B; 2011 Dec; 115(48):14167-75. PubMed ID: 21879742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How many amorphous ices are there?
    Loerting T; Winkel K; Seidl M; Bauer M; Mitterdorfer C; Handle PH; Salzmann CG; Mayer E; Finney JL; Bowron DT
    Phys Chem Chem Phys; 2011 May; 13(19):8783-94. PubMed ID: 21431195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for high-density liquid water between 0.1 and 0.3 GPa near 150 K.
    Stern JN; Seidl-Nigsch M; Loerting T
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9191-9196. PubMed ID: 30923121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation effects in low density amorphous ice: two distinct structural states observed by neutron diffraction.
    Winkel K; Bowron DT; Loerting T; Mayer E; Finney JL
    J Chem Phys; 2009 May; 130(20):204502. PubMed ID: 19485452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relation between high-density and very-high-density amorphous ice.
    Loerting T; Salzmann CG; Winkel K; Mayer E
    Phys Chem Chem Phys; 2006 Jun; 8(24):2810-8. PubMed ID: 16775634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.