These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23183665)

  • 21. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair.
    Hollingsworth NM; Ponte L; Halsey C
    Genes Dev; 1995 Jul; 9(14):1728-39. PubMed ID: 7622037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic mutagenesis of the Saccharomyces cerevisiae MLH1 gene reveals distinct roles for Mlh1p in meiotic crossing over and in vegetative and meiotic mismatch repair.
    Argueso JL; Kijas AW; Sarin S; Heck J; Waase M; Alani E
    Mol Cell Biol; 2003 Feb; 23(3):873-86. PubMed ID: 12529393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts.
    Morel G; Sterck L; Swennen D; Marcet-Houben M; Onesime D; Levasseur A; Jacques N; Mallet S; Couloux A; Labadie K; Amselem J; Beckerich JM; Henrissat B; Van de Peer Y; Wincker P; Souciet JL; Gabaldón T; Tinsley CR; Casaregola S
    Sci Rep; 2015 Jun; 5():11571. PubMed ID: 26108467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of the MRE2 gene of yeast in formation of meiosis-specific double-strand breaks and crossover recombination through RNA splicing.
    Nakagawa T; Ogawa H
    Genes Cells; 1997 Jan; 2(1):65-79. PubMed ID: 9112441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The sep1 mutant of Saccharomyces cerevisiae arrests in pachytene and is deficient in meiotic recombination.
    Tishkoff DX; Rockmill B; Roeder GS; Kolodner RD
    Genetics; 1995 Feb; 139(2):495-509. PubMed ID: 7713413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over.
    Baker SM; Plug AW; Prolla TA; Bronner CE; Harris AC; Yao X; Christie DM; Monell C; Arnheim N; Bradley A; Ashley T; Liskay RM
    Nat Genet; 1996 Jul; 13(3):336-42. PubMed ID: 8673133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis.
    Kelly KO; Dernburg AF; Stanfield GM; Villeneuve AM
    Genetics; 2000 Oct; 156(2):617-30. PubMed ID: 11014811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution.
    Schurko AM; Logsdon JM; Eads BD
    BMC Evol Biol; 2009 Apr; 9():78. PubMed ID: 19383157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A role for DNA polymerase delta in gene conversion and crossing over during meiosis in Saccharomyces cerevisiae.
    Maloisel L; Bhargava J; Roeder GS
    Genetics; 2004 Jul; 167(3):1133-42. PubMed ID: 15280229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid.
    Hunter N; Chambers SR; Louis EJ; Borts RH
    EMBO J; 1996 Apr; 15(7):1726-33. PubMed ID: 8612597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic Insight into Crossing over during Mouse Meiosis.
    Peterson SE; Keeney S; Jasin M
    Mol Cell; 2020 Jun; 78(6):1252-1263.e3. PubMed ID: 32362315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pan-mammalian analysis of molecular constraints underlying extended lifespan.
    Kowalczyk A; Partha R; Clark NL; Chikina M
    Elife; 2020 Feb; 9():. PubMed ID: 32043462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference.
    Segura J; Ferretti L; Ramos-Onsins S; Capilla L; Farré M; Reis F; Oliver-Bonet M; Fernández-Bellón H; Garcia F; Garcia-Caldés M; Robinson TJ; Ruiz-Herrera A
    Proc Biol Sci; 2013 Nov; 280(1771):20131945. PubMed ID: 24068360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An evolutionary and functional assessment of regulatory network motifs.
    Mazurie A; Bottani S; Vergassola M
    Genome Biol; 2005; 6(4):R35. PubMed ID: 15833122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis.
    Voelkel-Meiman K; Johnston C; Thappeta Y; Subramanian VV; Hochwagen A; MacQueen AJ
    PLoS Genet; 2015 Jun; 11(6):e1005335. PubMed ID: 26114667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Playing hide and seek with mammalian meiotic crossover hotspots.
    Buard J; de Massy B
    Trends Genet; 2007 Jun; 23(6):301-9. PubMed ID: 17434233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Meiotic recombination and genome evolution in plants.
    Melamed-Bessudo C; Shilo S; Levy AA
    Curr Opin Plant Biol; 2016 Apr; 30():82-7. PubMed ID: 26939088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous transposable elements as silencers, enhancers and targets of meiotic recombination.
    Underwood CJ; Choi K
    Chromosoma; 2019 Sep; 128(3):279-296. PubMed ID: 31332531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel and diverse functions of the DNA mismatch repair family in mammalian meiosis and recombination.
    Kolas NK; Cohen PE
    Cytogenet Genome Res; 2004; 107(3-4):216-31. PubMed ID: 15467367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flagellated algae protein evolution suggests the prevalence of lineage-specific rules governing evolutionary rates of eukaryotic proteins.
    Chang TY; Liao BY
    Genome Biol Evol; 2013; 5(5):913-22. PubMed ID: 23563973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.