BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23183982)

  • 1. Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels.
    Kim B; Du J; Eriksen DT; Zhao H
    Appl Environ Microbiol; 2013 Feb; 79(3):931-41. PubMed ID: 23183982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae.
    Lee YG; Jin YS; Cha YL; Seo JH
    Bioresour Technol; 2017 Mar; 228():355-361. PubMed ID: 28088640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.
    Chen Y; Wu Y; Zhu B; Zhang G; Wei N
    PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast.
    Wei N; Quarterman J; Kim SR; Cate JH; Jin YS
    Nat Commun; 2013; 4():2580. PubMed ID: 24105024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain.
    Yuan Y; Zhao H
    Biotechnol Bioeng; 2013 Nov; 110(11):2874-81. PubMed ID: 23616289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization.
    HamediRad M; Lian J; Li H; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1552-1560. PubMed ID: 29460286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose.
    Hou J; Qiu C; Shen Y; Li H; Bao X
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    Ghosh A; Zhao H; Price ND
    PLoS One; 2011; 6(11):e27316. PubMed ID: 22076150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.
    Hughes SR; Cox EJ; Bang SS; Pinkelman RJ; López-Núñez JC; Saha BC; Qureshi N; Gibbons WR; Fry MR; Moser BR; Bischoff KM; Liu S; Sterner DE; Butt TR; Riedmuller SB; Jones MA; Riaño-Herrera NM
    J Lab Autom; 2015 Dec; 20(6):621-35. PubMed ID: 25720598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis.
    Feng X; Zhao H
    Microb Cell Fact; 2013 Nov; 12():114. PubMed ID: 24245823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.
    Latimer LN; Dueber JE
    Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.
    Wasylenko TM; Stephanopoulos G
    Biotechnol Bioeng; 2015 Mar; 112(3):470-83. PubMed ID: 25311863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae.
    Shen MH; Song H; Li BZ; Yuan YJ
    Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.
    Kim SR; Skerker JM; Kong II; Kim H; Maurer MJ; Zhang GC; Peng D; Wei N; Arkin AP; Jin YS
    Metab Eng; 2017 Mar; 40():176-185. PubMed ID: 28216106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2487-98. PubMed ID: 26671616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ
    PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain.
    Nicolaï T; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2021 Jun; 20(1):114. PubMed ID: 34098954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.