BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23184227)

  • 21. Spectroscopic evaluation of the stabilization of humanized monoclonal antibodies in amino acid formulations.
    Tian F; Middaugh CR; Offerdahl T; Munson E; Sane S; Rytting JH
    Int J Pharm; 2007 Apr; 335(1-2):20-31. PubMed ID: 17141436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies.
    Thakkar SV; Joshi SB; Jones ME; Sathish HA; Bishop SM; Volkin DB; Middaugh CR
    J Pharm Sci; 2012 Sep; 101(9):3062-77. PubMed ID: 22581714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlating excipient effects on conformational and storage stability of an IgG1 monoclonal antibody with local dynamics as measured by hydrogen/deuterium-exchange mass spectrometry.
    Manikwar P; Majumdar R; Hickey JM; Thakkar SV; Samra HS; Sathish HA; Bishop SM; Middaugh CR; Weis DD; Volkin DB
    J Pharm Sci; 2013 Jul; 102(7):2136-51. PubMed ID: 23620222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Computations of Preferential Interaction Coefficients of IgG1 Monoclonal Antibodies with Sorbitol, Sucrose, and Trehalose and the Impact of These Excipients on Aggregation and Viscosity.
    Cloutier T; Sudrik C; Mody N; Sathish HA; Trout BL
    Mol Pharm; 2019 Aug; 16(8):3657-3664. PubMed ID: 31276620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS).
    Moussa EM; Wilson NE; Zhou QT; Singh SK; Nema S; Topp EM
    Pharm Res; 2018 Jan; 35(1):12. PubMed ID: 29299701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran.
    Allison SD; Manning MC; Randolph TW; Middleton K; Davis A; Carpenter JF
    J Pharm Sci; 2000 Feb; 89(2):199-214. PubMed ID: 10688749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Oct; 107(10):2538-2543. PubMed ID: 29890173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Freeze/thaw of IGG solutions.
    Horn J; Jena S; Aksan A; Friess W
    Eur J Pharm Biopharm; 2019 Jan; 134():185-189. PubMed ID: 30529434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effects of Excipients on Freeze-dried Monoclonal Antibody Formulation Degradation and Sub-Visible Particle Formation during Shaking.
    Jin MJ; Ge XZ; Huang Q; Liu JW; Ingle RG; Gao D; Fang WJ
    Pharm Res; 2024 Feb; 41(2):321-334. PubMed ID: 38291165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions.
    Telikepalli SN; Kumru OS; Kalonia C; Esfandiary R; Joshi SB; Middaugh CR; Volkin DB
    J Pharm Sci; 2014 Mar; 103(3):796-809. PubMed ID: 24452866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients.
    Anhorn MG; Mahler HC; Langer K
    Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of thermal treatment on the stability of freeze-dried amorphous pharmaceuticals: II. Aggregation in an IgG1 fusion protein.
    Wang B; Cicerone MT; Aso Y; Pikal MJ
    J Pharm Sci; 2010 Feb; 99(2):683-700. PubMed ID: 19798764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local dynamics and their alteration by excipients modulate the global conformational stability of an lgG1 monoclonal antibody.
    Thakkar SV; Kim JH; Samra HS; Sathish HA; Bishop SM; Joshi SB; Volkin DB; Middaugh CR
    J Pharm Sci; 2012 Dec; 101(12):4444-57. PubMed ID: 23060088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the Role of Preferential Exclusion of Sugars and Polyols from Native State IgG1 Monoclonal Antibodies and its Effect on Aggregation and Reversible Self-Association.
    Sudrik CM; Cloutier T; Mody N; Sathish HA; Trout BL
    Pharm Res; 2019 May; 36(8):109. PubMed ID: 31127417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retrospective statistical analysis of lyophilized protein formulations of progenipoietin using PLS: determination of the critical parameters for long-term storage stability.
    Katayama DS; Kirchhoff CF; Elliott CM; Johnson RE; Borgmeyer J; Thiele BR; Zeng DL; Qi H; Ludwig JD; Manning MC
    J Pharm Sci; 2004 Oct; 93(10):2609-23. PubMed ID: 15349970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freezing-induced perturbation of tertiary structure of a monoclonal antibody.
    Liu L; Braun LJ; Wang W; Randolph TW; Carpenter JF
    J Pharm Sci; 2014 Jul; 103(7):1979-1986. PubMed ID: 24832730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins III: collapse during storage at elevated temperatures.
    Schersch K; Betz O; Garidel P; Muehlau S; Bassarab S; Winter G
    Eur J Pharm Biopharm; 2013 Oct; 85(2):240-52. PubMed ID: 23727369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy.
    Koshari SH; Ross JL; Nayak PK; Zarraga IE; Rajagopal K; Wagner NJ; Lenhoff AM
    Mol Pharm; 2017 Feb; 14(2):546-553. PubMed ID: 28094996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.