These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23184449)

  • 21. Fluorescence lifetime imaging microscopy for quantitative biological imaging.
    Chen LC; Lloyd WR; Chang CW; Sud D; Mycek MA
    Methods Cell Biol; 2013; 114():457-88. PubMed ID: 23931519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM.
    Chennell G; Willows RJ; Warren SC; Carling D; French PM; Dunsby C; Sardini A
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FRET microscopy in the living cell: different approaches, strengths and weaknesses.
    Padilla-Parra S; Tramier M
    Bioessays; 2012 May; 34(5):369-76. PubMed ID: 22415767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive optics for a time-resolved Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) in vivo.
    Coelho S; Poland SP; Devauges V; Ameer-Beg SM
    Opt Lett; 2020 May; 45(10):2732-2735. PubMed ID: 32412453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Live-cell FLIM-FRET using a commercially available system.
    Castellani CM; Torres-Ocampo AP; Breffke J; White AB; Chambers JJ; Stratton MM; Maresca TJ
    Methods Cell Biol; 2020; 158():63-89. PubMed ID: 32423651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging protein molecules using FRET and FLIM microscopy.
    Wallrabe H; Periasamy A
    Curr Opin Biotechnol; 2005 Feb; 16(1):19-27. PubMed ID: 15722011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated High-Throughput Fluorescence Lifetime Imaging Microscopy to Detect Protein-Protein Interactions.
    Guzmán C; Oetken-Lindholm C; Abankwa D
    J Lab Autom; 2016 Apr; 21(2):238-45. PubMed ID: 26384400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time.
    Andrews N; Ramel MC; Kumar S; Alexandrov Y; Kelly DJ; Warren SC; Kerry L; Lockwood N; Frolov A; Frankel P; Bugeon L; McGinty J; Dallman MJ; French PM
    J Biophotonics; 2016 Apr; 9(4):414-24. PubMed ID: 26753623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay.
    Bayle V; Nussaume L; Bhat RA
    Plant Physiol; 2008 Sep; 148(1):51-60. PubMed ID: 18621983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells.
    Padilla-Parra S; Audugé N; Coppey-Moisan M; Tramier M
    Biophys J; 2008 Sep; 95(6):2976-88. PubMed ID: 18539634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy.
    Jyothikumar V; Sun Y; Periasamy A
    J Biomed Opt; 2013 Jun; 18(6):060501. PubMed ID: 23748699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence lifetime and polarization-resolved imaging in cell biology.
    Levitt JA; Matthews DR; Ameer-Beg SM; Suhling K
    Curr Opin Biotechnol; 2009 Feb; 20(1):28-36. PubMed ID: 19268568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer.
    Omer T; Zhao L; Intes X; Hahn J
    J Biomed Opt; 2014 Aug; 19(8):086023. PubMed ID: 25166472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining TIR and FRET in Molecular Test Systems.
    Schneckenburger H; Weber P; Wagner M; Enderle S; Kalthof B; Schneider L; Herzog C; Weghuber J; Lanzerstorfer P
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30717378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Setup and characterization of a multiphoton FLIM instrument for protein-protein interaction measurements in living cells.
    Waharte F; Spriet C; Héliot L
    Cytometry A; 2006 Apr; 69(4):299-306. PubMed ID: 16498675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ShadowY: a dark yellow fluorescent protein for FLIM-based FRET measurement.
    Murakoshi H; Shibata ACE
    Sci Rep; 2017 Jul; 7(1):6791. PubMed ID: 28754922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative Imaging of Genetically Encoded Fluorescence Lifetime Biosensors.
    Vu CQ; Arai S
    Biosensors (Basel); 2023 Oct; 13(10):. PubMed ID: 37887132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative real-time imaging of intracellular FRET biosensor dynamics using rapid multi-beam confocal FLIM.
    Levitt JA; Poland SP; Krstajic N; Pfisterer K; Erdogan A; Barber PR; Parsons M; Henderson RK; Ameer-Beg SM
    Sci Rep; 2020 Mar; 10(1):5146. PubMed ID: 32198437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.
    Omer T; Intes X; Hahn J
    PLoS One; 2015; 10(12):e0144421. PubMed ID: 26658308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.
    Detert Oude Weme RG; Kovács ÁT; de Jong SJ; Veening JW; Siebring J; Kuipers OP
    PLoS One; 2015; 10(4):e0123239. PubMed ID: 25886351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.