These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23184559)

  • 1. Carbon-based nanomaterials for tissue engineering.
    Ku SH; Lee M; Park CB
    Adv Healthc Mater; 2013 Feb; 2(2):244-60. PubMed ID: 23184559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose.
    Kandhola G; Park S; Lim JW; Chivers C; Song YH; Chung JH; Kim J; Kim JW
    Tissue Eng Regen Med; 2023 Jun; 20(3):411-433. PubMed ID: 37060487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering.
    Geetha Bai R; Muthoosamy K; Manickam S; Hilal-Alnaqbi A
    Int J Nanomedicine; 2019; 14():5753-5783. PubMed ID: 31413573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Update on Graphene-Based Nanomaterials for Neural Growth and Central Nervous System Regeneration.
    Tupone MG; Panella G; d'Angelo M; Castelli V; Caioni G; Catanesi M; Benedetti E; Cimini A
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured Materials for Artificial Tissue Replacements.
    Pryjmaková J; Kaimlová M; Hubáček T; Švorčík V; Siegel J
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review.
    Eivazzadeh-Keihan R; Maleki A; de la Guardia M; Bani MS; Chenab KK; Pashazadeh-Panahi P; Baradaran B; Mokhtarzadeh A; Hamblin MR
    J Adv Res; 2019 Jul; 18():185-201. PubMed ID: 31032119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterials for Cardiac Tissue Engineering.
    R Amin D; Sink E; Narayan SP; Abdel-Hafiz M; Mestroni L; Peña B
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33171802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-Based Nanocomposites for Neural Tissue Engineering.
    Bei HP; Yang Y; Zhang Q; Tian Y; Luo X; Yang M; Zhao X
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30781759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and cytocompatibility of in situ crosslinked carbon nanomaterial films.
    Patel SC; Lalwani G; Grover K; Qin YX; Sitharaman B
    Sci Rep; 2015 May; 5():10261. PubMed ID: 26018775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering.
    Jalilinejad N; Rabiee M; Baheiraei N; Ghahremanzadeh R; Salarian R; Rabiee N; Akhavan O; Zarrintaj P; Hejna A; Saeb MR; Zarrabi A; Sharifi E; Yousefiasl S; Zare EN
    Bioeng Transl Med; 2023 Jan; 8(1):e10347. PubMed ID: 36684103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of Graphene Family Nanomaterials in Regenerative Medicine: Recent Advances, Challenges, and Future Perspectives.
    Chen X; Zou M; Liu S; Cheng W; Guo W; Feng X
    Int J Nanomedicine; 2024; 19():5459-5478. PubMed ID: 38863648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review.
    Stocco TD; Zhang T; Dimitrov E; Ghosh A; da Silva AMH; Melo WCMA; Tsumura WG; Silva ADR; Sousa GF; Viana BC; Terrones M; Lobo AO
    Int J Nanomedicine; 2023; 18():6153-6183. PubMed ID: 37915750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofunctionalized 3-D Carbon Nano-Network Platform for Enhanced Fibroblast Cell Adhesion.
    Chowdhury AK; Tavangar A; Tan B; Venkatakrishnan K
    Sci Rep; 2017 Mar; 7():44250. PubMed ID: 28287138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanomaterials for Electro-Active Structures: A Review.
    Wang W; Hou Y; Martinez D; Kurniawan D; Chiang WH; Bartolo P
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33317211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of nanomaterials on embryonic stem cell neural differentiation: a systematic review.
    Rahimi Darehbagh R; Mahmoodi M; Amini N; Babahajiani M; Allavaisie A; Moradi Y
    Eur J Med Res; 2023 Dec; 28(1):576. PubMed ID: 38071365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterial Additives for Fabrication of Stimuli-Responsive Skeletal Muscle Tissue Engineering Constructs.
    Farr AC; Hogan KJ; Mikos AG
    Adv Healthc Mater; 2020 Dec; 9(23):e2000730. PubMed ID: 32691983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications.
    Govindarajan D; Saravanan S; Sudhakar S; Vimalraj S
    ACS Omega; 2024 Jan; 9(1):67-80. PubMed ID: 38222554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Nano Neuroscience: From Nanomaterials to Nanotools.
    Pampaloni NP; Giugliano M; Scaini D; Ballerini L; Rauti R
    Front Neurosci; 2018; 12():953. PubMed ID: 30697140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial machines of morphogenesis and their potential application in organ assembly and tissue engineering.
    Joshi SD; Davidson LA
    Biomech Model Mechanobiol; 2012 Nov; 11(8):1109-21. PubMed ID: 22854913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-Based Nanomaterials 4.0.
    Díez-Pascual AM
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.