These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23184572)

  • 1. An artificial neural network approach to improving the correlation between protein energetics and the backbone structure.
    Fawcett TM; Irausquin SJ; Simin M; Valafar H
    Proteomics; 2013 Jan; 13(2):230-8. PubMed ID: 23184572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; Baù D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FastContact: a free energy scoring tool for protein-protein complex structures.
    Champ PC; Camacho CJ
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W556-60. PubMed ID: 17537824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional potential of mean force to improve backbone and sidechain hydrogen bond geometry in Xplor-NIH protein structure determination.
    Schwieters CD; Bermejo GA; Clore GM
    Protein Sci; 2020 Jan; 29(1):100-110. PubMed ID: 31613020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization.
    Bhattacharya D; Cheng J
    Proteins; 2013 Jan; 81(1):119-31. PubMed ID: 22927229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio folding of proteins with all-atom discrete molecular dynamics.
    Ding F; Tsao D; Nie H; Dokholyan NV
    Structure; 2008 Jul; 16(7):1010-8. PubMed ID: 18611374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics.
    Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):205-264. PubMed ID: 30506159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles, challenges and advances in ab initio protein structure prediction.
    Jothi A
    Protein Pept Lett; 2012 Nov; 19(11):1194-204. PubMed ID: 22587787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying native-like protein structures with scoring functions based on all-atom ECEPP force fields, implicit solvent models and structure relaxation.
    Arnautova YA; Vorobjev YN; Vila JA; Scheraga HA
    Proteins; 2009 Oct; 77(1):38-51. PubMed ID: 19384995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing protein structures by neural network pairwise interaction fields and iterative decoy set construction.
    Mirabello C; Adelfio A; Pollastri G
    Biomolecules; 2014 Feb; 4(1):160-80. PubMed ID: 24970210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New method for protein secondary structure assignment based on a simple topological descriptor.
    Taylor T; Rivera M; Wilson G; Vaisman II
    Proteins; 2005 Aug; 60(3):513-24. PubMed ID: 15887224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid genetic-neural system for predicting protein secondary structure.
    Armano G; Mancosu G; Milanesi L; Orro A; Saba M; Vargiu E
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S3. PubMed ID: 16351752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles.
    Möglich A; Weinfurtner D; Maurer T; Gronwald W; Kalbitzer HR
    BMC Bioinformatics; 2005 Apr; 6():91. PubMed ID: 15819976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GSAFold: a new application of GSA to protein structure prediction.
    Melo MC; Bernardi RC; Fernandes TV; Pascutti PG
    Proteins; 2012 Aug; 80(9):2305-10. PubMed ID: 22622959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein backbone angle prediction with machine learning approaches.
    Kuang R; Leslie CS; Yang AS
    Bioinformatics; 2004 Jul; 20(10):1612-21. PubMed ID: 14988121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.