These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 23184674)
1. Subtle changes to polymer structure and degradation mechanism enable highly effective nanoparticles for siRNA and DNA delivery to human brain cancer. Tzeng SY; Green JJ Adv Healthc Mater; 2013 Mar; 2(3):468-80. PubMed ID: 23184674 [TBL] [Abstract][Full Text] [Related]
2. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. Kozielski KL; Tzeng SY; De Mendoza BA; Green JJ ACS Nano; 2014 Apr; 8(4):3232-41. PubMed ID: 24673565 [TBL] [Abstract][Full Text] [Related]
3. A bioreducible linear poly(β-amino ester) for siRNA delivery. Kozielski KL; Tzeng SY; Green JJ Chem Commun (Camb); 2013 Jun; 49(46):5319-21. PubMed ID: 23646347 [TBL] [Abstract][Full Text] [Related]
4. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Bishop CJ; Tzeng SY; Green JJ Acta Biomater; 2015 Jan; 11():393-403. PubMed ID: 25246314 [TBL] [Abstract][Full Text] [Related]
5. Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Kozielski KL; Ruiz-Valls A; Tzeng SY; Guerrero-Cázares H; Rui Y; Li Y; Vaughan HJ; Gionet-Gonzales M; Vantucci C; Kim J; Schiapparelli P; Al-Kharboosh R; Quiñones-Hinojosa A; Green JJ Biomaterials; 2019 Jul; 209():79-87. PubMed ID: 31026613 [TBL] [Abstract][Full Text] [Related]
7. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties. Sunshine JC; Peng DY; Green JJ Mol Pharm; 2012 Nov; 9(11):3375-83. PubMed ID: 22970908 [TBL] [Abstract][Full Text] [Related]
8. Cystamine-terminated poly(beta-amino ester)s for siRNA delivery to human mesenchymal stem cells and enhancement of osteogenic differentiation. Tzeng SY; Hung BP; Grayson WL; Green JJ Biomaterials; 2012 Nov; 33(32):8142-51. PubMed ID: 22871421 [TBL] [Abstract][Full Text] [Related]
9. Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Bishop CJ; Majewski RL; Guiriba TR; Wilson DR; Bhise NS; Quiñones-Hinojosa A; Green JJ Acta Biomater; 2016 Jun; 37():120-30. PubMed ID: 27019146 [TBL] [Abstract][Full Text] [Related]
10. Delivery of siRNA mediated by histidine-containing reducible polycations. Stevenson M; Ramos-Perez V; Singh S; Soliman M; Preece JA; Briggs SS; Read ML; Seymour LW J Control Release; 2008 Aug; 130(1):46-56. PubMed ID: 18571758 [TBL] [Abstract][Full Text] [Related]
11. Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. Li RQ; Wu W; Song HQ; Ren Y; Yang M; Li J; Xu FJ Acta Biomater; 2016 Sep; 41():282-92. PubMed ID: 27267781 [TBL] [Abstract][Full Text] [Related]
12. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. Gary DJ; Puri N; Won YY J Control Release; 2007 Aug; 121(1-2):64-73. PubMed ID: 17588702 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human glioblastoma in vitro and in vivo. Guerrero-Cázares H; Tzeng SY; Young NP; Abutaleb AO; Quiñones-Hinojosa A; Green JJ ACS Nano; 2014 May; 8(5):5141-53. PubMed ID: 24766032 [TBL] [Abstract][Full Text] [Related]
14. Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery. Kim HA; Nam K; Kim SW Biomaterials; 2014 Aug; 35(26):7543-52. PubMed ID: 24894645 [TBL] [Abstract][Full Text] [Related]
15. Bioreducible Poly(Beta-Amino Ester)s for Intracellular Delivery of SiRNA. Kozielski KL; Green JJ Methods Mol Biol; 2016; 1364():79-87. PubMed ID: 26472444 [TBL] [Abstract][Full Text] [Related]
16. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Lee TJ; Haque F; Shu D; Yoo JY; Li H; Yokel RA; Horbinski C; Kim TH; Kim SH; Kwon CH; Nakano I; Kaur B; Guo P; Croce CM Oncotarget; 2015 Jun; 6(17):14766-76. PubMed ID: 25885522 [TBL] [Abstract][Full Text] [Related]
17. Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. Wang W; Balk M; Deng Z; Wischke C; Gossen M; Behl M; Ma N; Lendlein A J Control Release; 2016 Nov; 242():71-79. PubMed ID: 27498020 [TBL] [Abstract][Full Text] [Related]
18. A combinatorial polymer library approach yields insight into nonviral gene delivery. Green JJ; Langer R; Anderson DG Acc Chem Res; 2008 Jun; 41(6):749-59. PubMed ID: 18507402 [TBL] [Abstract][Full Text] [Related]
19. Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: downregulating mRNA expression level and sensitizing cancer cells to anticancer drug. Beh CW; Seow WY; Wang Y; Zhang Y; Ong ZY; Ee PL; Yang YY Biomacromolecules; 2009 Jan; 10(1):41-8. PubMed ID: 19072631 [TBL] [Abstract][Full Text] [Related]
20. Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform. Yoo J; Lee D; Gujrati V; Rejinold NS; Lekshmi KM; Uthaman S; Jeong C; Park IK; Jon S; Kim YC J Control Release; 2017 Jan; 246():142-154. PubMed ID: 27170226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]