These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 23184706)

  • 1. The mitochondria free iron content to limit an isotope effect of (25)Mg (2+) in ATP synthesis: a caution.
    Svistunov AA; Napolov YK; Bukhvostov AA; Shatalov OA; Alyautdin RN; Kuznetsov DA
    Cell Biochem Biophys; 2013 Jun; 66(2):417-8. PubMed ID: 23184706
    [No Abstract]   [Full Text] [Related]  

  • 2. Spin biochemistry: magnetic 24Mg-25Mg-26Mg isotope effect in mitochondrial ADP phosphorylation.
    Buchachenko AL; Kouznetsov DA; Arkhangelsky SE; Orlova MA; Markarian AA
    Cell Biochem Biophys; 2005; 43(2):243-51. PubMed ID: 16049349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ATP-and ADP-binding sites in mitochondrial coupling factor F1 and their possible role in oxidative phosphorylation.
    Slater EC; Kemp A; van der Kraan I; Muller JL; Roveri OA; Verschoor GJ; Wagenvoord RJ; Wielders JP
    FEBS Lett; 1979 Jul; 103(1):7-11. PubMed ID: 467655
    [No Abstract]   [Full Text] [Related]  

  • 4. [The effect of magnesium pool isotopy on reactivation of mitochondrial ATP synthesis suppressed by 1-methyl-nicotine amide].
    Kuznetsov DA; Aliautdin RN; Markarian AA; Berdieva AG; Khasigov PZ; Gatagonova TM; Ktsoeva SA; Orlova MA
    Biomed Khim; 2006; 52(2):146-52. PubMed ID: 16805385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-ADP translocase and effects on ischemic heart.
    Luft FC
    J Mol Med (Berl); 2016 Jun; 94(6):609-11. PubMed ID: 27080393
    [No Abstract]   [Full Text] [Related]  

  • 6. [Creatine kinase reaction in cardiac mitoplasts of rats. Its relation to oxidative phosphorylation].
    Kuznetsov AV; Saks VA; Kupriianov VV
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985; 8(1):7-14. PubMed ID: 4005057
    [No Abstract]   [Full Text] [Related]  

  • 7. Age-dependent changes in the structure-function correlation of ADP/ATP-translocating mitochondrial membranes.
    Nohl H
    Gerontology; 1982; 28(6):354-9. PubMed ID: 7160622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Assessment of energy-dependent Ca2+ transport in myocardial mitochondria in the ventricular fibrillation: potential diagnostic implication].
    Saakian IR; Sherdukalova LF; Saakian GG
    Biomed Khim; 2003; 49(5):463-9. PubMed ID: 16119099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of physical conditioning on cardiac mitochondrial function.
    Penpargkul S; Schwartz A; Scheuer J
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Dec; 45(6):978-86. PubMed ID: 730603
    [No Abstract]   [Full Text] [Related]  

  • 10. [Participation of the adenine nucleotide translocator in the regulation of pyruvate oxidation in heart mitochondria].
    Ivanovene LI; Borutaĭte VI; Zhilinskene VIu; Toleĭkis AI; Prashkiavichius AK
    Biull Eksp Biol Med; 1988 May; 105(5):540-2. PubMed ID: 3382729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios.
    Ramzan R; Schaper AK; Weber P; Rhiel A; Siddiq MS; Vogt S
    Biol Chem; 2017 Jun; 398(7):737-750. PubMed ID: 27926476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites.
    Ye JJ; Du J; Lin ZH
    Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic basis of diastolic dysfunction.
    Tian R
    MAGMA; 1998 Sep; 6(2-3):129-31. PubMed ID: 9803384
    [No Abstract]   [Full Text] [Related]  

  • 14. Accelerated mitochondrial adenosine diphosphate/adenosine triphosphate transport improves hypertension-induced heart disease.
    Walther T; Tschöpe C; Sterner-Kock A; Westermann D; Heringer-Walther S; Riad A; Nikolic A; Wang Y; Ebermann L; Siems WE; Bader M; Shakibaei M; Schultheiss HP; Dörner A
    Circulation; 2007 Jan; 115(3):333-44. PubMed ID: 17210842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback Regulation and Time Hierarchy of Oxidative Phosphorylation in Cardiac Mitochondria.
    Vinnakota KC; Bazil JN; Van den Bergh F; Wiseman RW; Beard DA
    Biophys J; 2016 Feb; 110(4):972-80. PubMed ID: 26910434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Relation between glutamate and adenine nucleotide levels of heart mitochondria during hypoxia].
    Pisarenko OI; Solomatina ES; Studneva IM
    Biokhimiia; 1987 Apr; 52(4):543-9. PubMed ID: 3593788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria.
    Asimakis GK; Sordahl LA
    Am J Physiol; 1981 Nov; 241(5):H672-8. PubMed ID: 6272586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of oligomycin on the functional properties of rabbit heart mitochondria.
    Yang WC; Lacuara J
    Proc West Pharmacol Soc; 1978; 21():123-30. PubMed ID: 693489
    [No Abstract]   [Full Text] [Related]  

  • 19. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells.
    McClellan G; Weisberg A; Winegrad S
    Am J Physiol; 1983 Nov; 245(5 Pt 1):C423-7. PubMed ID: 6638167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings: Properties of a phosphorylated intermediate of the Ca2+-dependent ATPase and ADP-ATP phosphate exchange of cardiac sarcoplasmic reticulum.
    Suko J; Hasselbach W
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R97. PubMed ID: 4276657
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.