These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23184724)

  • 21. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma.
    Vaisocherová H; Yang W; Zhang Z; Cao Z; Cheng G; Piliarik M; Homola J; Jiang S
    Anal Chem; 2008 Oct; 80(20):7894-901. PubMed ID: 18808152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of boronate-containing polymer brushes and gels as substrates for carbohydrate-mediated adhesion and cultivation of animal cells.
    Ivanov AE; Kumar A; Nilsang S; Aguilar MR; Mikhalovska LI; Savina IN; Nilsson L; Scheblykin IG; Kuzimenkova MV; Galaev IY
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):510-9. PubMed ID: 19837569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.
    Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN
    Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.
    Zhao C; Li L; Wang Q; Yu Q; Zheng J
    Langmuir; 2011 Apr; 27(8):4906-13. PubMed ID: 21405141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cooperative adsorption of lipoprotein phospholipids, triglycerides, and cholesteryl esters are a key factor in nonspecific adsorption from blood plasma to antifouling polymer surfaces.
    Gunkel G; Huck WT
    J Am Chem Soc; 2013 May; 135(18):7047-52. PubMed ID: 23581703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymer brushes showing non-fouling in blood plasma challenge the currently accepted design of protein resistant surfaces.
    Rodriguez-Emmenegger C; Brynda E; Riedel T; Houska M; Šubr V; Alles AB; Hasan E; Gautrot JE; Huck WT
    Macromol Rapid Commun; 2011 Jul; 32(13):952-7. PubMed ID: 21644241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of polymer brush architecture on antibiofouling properties.
    Gunkel G; Weinhart M; Becherer T; Haag R; Huck WT
    Biomacromolecules; 2011 Nov; 12(11):4169-72. PubMed ID: 21932841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The induction of thrombus generation on nanostructured neutral polymer brush surfaces.
    Lai BF; Creagh AL; Janzen J; Haynes CA; Brooks DE; Kizhakkedathu JN
    Biomaterials; 2010 Sep; 31(26):6710-8. PubMed ID: 20641167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials.
    Nakabayashi N; Iwasaki Y
    Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel sequence for generating glycopolymer tethered on a membrane surface.
    Yang Q; Xu ZK; Hu MX; Li JJ; Wu J
    Langmuir; 2005 Nov; 21(23):10717-23. PubMed ID: 16262342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations.
    Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y
    Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion.
    Chang Y; Liao SC; Higuchi A; Ruaan RC; Chu CW; Chen WY
    Langmuir; 2008 May; 24(10):5453-8. PubMed ID: 18399670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recognition of sugars on surface-bound cap-shaped gold particles modified with a polymer brush.
    Anraku Y; Takahashi Y; Kitano H; Hakari M
    Colloids Surf B Biointerfaces; 2007 May; 57(1):61-8. PubMed ID: 17307342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.
    Anand G; Zhang F; Linhardt RJ; Belfort G
    Langmuir; 2011 Mar; 27(5):1830-6. PubMed ID: 21182242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory.
    Feuz L; Leermakers FA; Textor M; Borisov O
    Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface grafted glycopolymer brushes to enhance selective adhesion of HepG2 cells.
    Chernyy S; Jensen BE; Shimizu K; Ceccato M; Pedersen SU; Zelikin AN; Daasbjerg K; Iruthayaraj J
    J Colloid Interface Sci; 2013 Aug; 404():207-14. PubMed ID: 23711662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Kauffmann E; Ehrat M; Klok HA
    Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of Multivalent Protein Binding on Surfaces by Glycopolymer Brush Chemistry.
    Yu K; Creagh AL; Haynes CA; Kizhakkedathu JN
    Methods Mol Biol; 2016; 1367():183-93. PubMed ID: 26537474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces.
    Andruzzi L; Senaratne W; Hexemer A; Sheets ED; Ilic B; Kramer EJ; Baird B; Ober CK
    Langmuir; 2005 Mar; 21(6):2495-504. PubMed ID: 15752045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.