These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23184812)

  • 1. A yeast-based rapid prototype platform for gene control elements in mammalian cells.
    Wei KY; Chen YY; Smolke CD
    Biotechnol Bioeng; 2013 Apr; 110(4):1201-10. PubMed ID: 23184812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression.
    Ausländer S; Ketzer P; Hartig JS
    Mol Biosyst; 2010 May; 6(5):807-14. PubMed ID: 20567766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of ribozyme-based aminoglycoside switches of gene expression by in vivo genetic selection in Saccharomyces cerevisiae.
    Klauser B; Rehm C; Summerer D; Hartig JS
    Methods Enzymol; 2015; 550():301-20. PubMed ID: 25605392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems.
    Chen YY; Jensen MC; Smolke CD
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8531-6. PubMed ID: 20421500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-responsive ribozyme switches in eukaryotic cells.
    Kennedy AB; Vowles JV; d'Espaux L; Smolke CD
    Nucleic Acids Res; 2014 Oct; 42(19):12306-21. PubMed ID: 25274734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast.
    Wittmann A; Suess B
    Mol Biosyst; 2011 Aug; 7(8):2419-27. PubMed ID: 21603688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ribozyme riboswitch based gene expression regulation systems for gene therapy applications: progress and challenges].
    Feng JX; Wang JW; Lin JS; Diao Y
    Yao Xue Xue Bao; 2014 Nov; 49(11):1504-11. PubMed ID: 25757274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massively parallel RNA device engineering in mammalian cells with RNA-Seq.
    Xiang JS; Kaplan M; Dykstra P; Hinks M; McKeague M; Smolke CD
    Nat Commun; 2019 Sep; 10(1):4327. PubMed ID: 31548547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A platform for rapid prototyping of synthetic gene networks in mammalian cells.
    Duportet X; Wroblewska L; Guye P; Li Y; Eyquem J; Rieders J; Rimchala T; Batt G; Weiss R
    Nucleic Acids Res; 2014 Dec; 42(21):13440-51. PubMed ID: 25378321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function.
    Win MN; Smolke CD
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14283-8. PubMed ID: 17709748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional control of suicide gene expression in tumor cells with theophylline-responsive ribozyme.
    Zhang Y; Wang J; Cheng H; Sun Y; Liu M; Wu Z; Pei R
    Gene Ther; 2017 Feb; 24(2):84-91. PubMed ID: 27874855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells.
    Deans TL; Cantor CR; Collins JJ
    Cell; 2007 Jul; 130(2):363-72. PubMed ID: 17662949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-transcriptional Boolean computation by combining aptazymes controlling mRNA translation initiation and tRNA activation.
    Klauser B; Saragliadis A; Ausländer S; Wieland M; Berthold MR; Hartig JS
    Mol Biosyst; 2012 Sep; 8(9):2242-8. PubMed ID: 22777205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design and tuning of ribozyme-based devices.
    Liang JC; Smolke CD
    Methods Mol Biol; 2012; 848():439-54. PubMed ID: 22315085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules.
    Babiskin AH; Smolke CD
    Nucleic Acids Res; 2011 Jul; 39(12):5299-311. PubMed ID: 21355039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage.
    Yen L; Svendsen J; Lee JS; Gray JT; Magnier M; Baba T; D'Amato RJ; Mulligan RC
    Nature; 2004 Sep; 431(7007):471-6. PubMed ID: 15386015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic feedback control using an RNAi-based gene-regulatory device.
    Bloom RJ; Winkler SM; Smolke CD
    J Biol Eng; 2015; 9():5. PubMed ID: 25897323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of gene expression by a natural metabolite-responsive ribozyme.
    Winkler WC; Nahvi A; Roth A; Collins JA; Breaker RR
    Nature; 2004 Mar; 428(6980):281-6. PubMed ID: 15029187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating myoblast differentiation with RNA-based controllers.
    Dykstra PB; Rando TA; Smolke CD
    PLoS One; 2022; 17(9):e0275298. PubMed ID: 36166456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.
    Shen S; Rodrigo G; Prakash S; Majer E; Landrain TE; Kirov B; Daròs JA; Jaramillo A
    Nucleic Acids Res; 2015 May; 43(10):5158-70. PubMed ID: 25916845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.