BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23184823)

  • 1. A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system.
    Sekine Y; Moritani Y; Ikeda-Fukazawa T; Sasaki Y; Akiyoshi K
    Adv Healthc Mater; 2012 Nov; 1(6):722-8. PubMed ID: 23184823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function.
    Hirakura T; Yasugi K; Nemoto T; Sato M; Shimoboji T; Aso Y; Morimoto N; Akiyoshi K
    J Control Release; 2010 Mar; 142(3):483-9. PubMed ID: 19951730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system.
    Molinos M; Carvalho V; Silva DM; Gama FM
    Biomacromolecules; 2012 Feb; 13(2):517-27. PubMed ID: 22288730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery.
    Shimoda A; Sawada S; Kano A; Maruyama A; Moquin A; Winnik FM; Akiyoshi K
    Colloids Surf B Biointerfaces; 2012 Nov; 99():38-44. PubMed ID: 21996463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers.
    Yu Y; Deng C; Meng F; Shi Q; Feijen J; Zhong Z
    J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces.
    Lee I; Akiyoshi K
    Biomaterials; 2004 Jul; 25(15):2911-8. PubMed ID: 14967522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liposome-nanogel structures for future pharmaceutical applications.
    Kazakov S; Levon K
    Curr Pharm Des; 2006; 12(36):4713-28. PubMed ID: 17168774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: interaction with proteins and chaperone-like activity.
    Morimoto N; Endo T; Iwasaki Y; Akiyoshi K
    Biomacromolecules; 2005; 6(4):1829-34. PubMed ID: 16004415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanogel tectonic porous gel loading biologics, nanocarriers, and cells for advanced scaffold.
    Hashimoto Y; Mukai SA; Sawada S; Sasaki Y; Akiyoshi K
    Biomaterials; 2015 Jan; 37():107-15. PubMed ID: 25453324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications.
    Sasaki Y; Akiyoshi K
    Chem Rec; 2010 Dec; 10(6):366-76. PubMed ID: 20836092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release of drugs from multi-component biomaterials.
    Zalfen AM; Nizet D; Jérôme C; Jérôme R; Frankenne F; Foidart JM; Maquet V; Lecomte F; Hubert P; Evrard B
    Acta Biomater; 2008 Nov; 4(6):1788-96. PubMed ID: 18583206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis by AGET ATRP of degradable nanogel precursors for in situ formation of nanostructured hyaluronic acid hydrogel.
    Bencherif SA; Washburn NR; Matyjaszewski K
    Biomacromolecules; 2009 Sep; 10(9):2499-507. PubMed ID: 19711888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor.
    Cai S; Liu Y; Zheng Shu X; Prestwich GD
    Biomaterials; 2005 Oct; 26(30):6054-67. PubMed ID: 15958243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior.
    Lin G; Cosimbescu L; Karin NJ; Tarasevich BJ
    Biomed Mater; 2012 Apr; 7(2):024107. PubMed ID: 22456931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks.
    Engberg K; Frank CW
    Biomed Mater; 2011 Oct; 6(5):055006. PubMed ID: 21873762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liposomal drugs dispersed in hydrogels. Effect of liposome, drug and gel properties on drug release kinetics.
    Mourtas S; Fotopoulou S; Duraj S; Sfika V; Tsakiroglou C; Antimisiaris SG
    Colloids Surf B Biointerfaces; 2007 Apr; 55(2):212-21. PubMed ID: 17223020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Osteoconductive Ability of Two Types of Cholesterol-Bearing Pullulan (CHP) Nanogel-Hydrogels Impregnated with BMP-2 and RANKL-Binding Peptide: Bone Histomorphometric Study in a Murine Calvarial Defect Model.
    Xie C; Rashed F; Sasaki Y; Khan M; Qi J; Kubo Y; Matsumoto Y; Sawada S; Sasaki Y; Ono T; Ikeda T; Akiyoshi K; Aoki K
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raspberry-like assembly of cross-linked nanogels for protein delivery.
    Hasegawa U; Sawada S; Shimizu T; Kishida T; Otsuji E; Mazda O; Akiyoshi K
    J Control Release; 2009 Dec; 140(3):312-7. PubMed ID: 19573568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.