These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23184875)

  • 1. Selective ruthenium-catalyzed three-component synthesis of pyrroles.
    Zhang M; Neumann H; Beller M
    Angew Chem Int Ed Engl; 2013 Jan; 52(2):597-601. PubMed ID: 23184875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruthenium-catalyzed pyrrole synthesis via oxidative annulation of enamides and alkynes.
    Li B; Wang N; Liang Y; Xu S; Wang B
    Org Lett; 2013 Jan; 15(1):136-9. PubMed ID: 23234540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu(OTf)2-catalyzed synthesis of 2,3-disubstituted indoles and 2,4,5-trisubstituted pyrroles from α-diazoketones.
    Reddy BV; Reddy MR; Rao YG; Yadav JS; Sridhar B
    Org Lett; 2013 Feb; 15(3):464-7. PubMed ID: 23323540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenium-catalyzed regioselective C2 alkenylation of indoles and pyrroles via C-H bond functionalization.
    Li B; Ma J; Xie W; Song H; Xu S; Wang B
    J Org Chem; 2013 Sep; 78(18):9345-53. PubMed ID: 24025192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium-catalyzed acceptorless dehydrogenative coupling of amino alcohols and ynones to access 3-acylpyrroles.
    Pan M; Wang X; Tong Y; Qiu X; Zeng X; Xiong B
    Chem Commun (Camb); 2022 Feb; 58(14):2379-2382. PubMed ID: 35080540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-component synthesis of polysubstituted pyrroles from α-diazoketones, nitroalkenes, and amines.
    Hong D; Zhu Y; Li Y; Lin X; Lu P; Wang Y
    Org Lett; 2011 Sep; 13(17):4668-71. PubMed ID: 21830767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct synthesis of pyrroles by dehydrogenative coupling of β-aminoalcohols with secondary alcohols catalyzed by ruthenium pincer complexes.
    Srimani D; Ben-David Y; Milstein D
    Angew Chem Int Ed Engl; 2013 Apr; 52(14):4012-5. PubMed ID: 23468418
    [No Abstract]   [Full Text] [Related]  

  • 8. Regioselective formation of alpha-vinylpyrroles from the ruthenium-catalyzed coupling reaction of pyrroles and terminal alkynes involving C-H bond activation.
    Gao R; Yi CS
    J Org Chem; 2010 May; 75(9):3144-6. PubMed ID: 20384382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile pyrrole synthesis through ruthenium(II)-catalyzed alkene C-H bond functionalization on enamines.
    Wang L; Ackermann L
    Org Lett; 2013 Jan; 15(1):176-9. PubMed ID: 23256885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2,4- vs 3,4-disubsituted pyrrole synthesis switched by copper and nickel catalysts.
    Chen F; Shen T; Cui Y; Jiao N
    Org Lett; 2012 Sep; 14(18):4926-9. PubMed ID: 22946483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-catalyzed C(sp(3))-H functionalization of ketones with vinyl azides: synthesis of substituted-1H-pyrroles.
    Donthiri RR; Samanta S; Adimurthy S
    Org Biomol Chem; 2015 Oct; 13(40):10113-6. PubMed ID: 26369270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indium-catalyzed reductive alkylation of pyrroles with alkynes and hydrosilanes: selective synthesis of beta-alkylpyrroles.
    Tsuchimoto T; Wagatsuma T; Aoki K; Shimotori J
    Org Lett; 2009 May; 11(10):2129-32. PubMed ID: 19382768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper- or phosphine-catalyzed reaction of alkynes with isocyanides. Regioselective synthesis of substituted pyrroles controlled by the catalyst.
    Kamijo S; Kanazawa C; Yamamoto Y
    J Am Chem Soc; 2005 Jun; 127(25):9260-6. PubMed ID: 15969607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iodine-Promoted Construction of Polysubstituted 2,3-Dihydropyrroles from Chalcones and β-Enamine Ketones (Esters).
    Li Y; Xu H; Xing M; Huang F; Jia J; Gao J
    Org Lett; 2015 Aug; 17(15):3690-3. PubMed ID: 26176324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient and expedient synthesis of 5-hydroxy-1H-pyrrol-2-(5H)-ones from FeCl3-catalyzed tandem intramolecular enaminic addition of tertiary enamides to ketones and 1,3-hydroxy rearrangement.
    Yang L; Lei CH; Wang DX; Huang ZT; Wang MX
    Org Lett; 2010 Sep; 12(17):3918-21. PubMed ID: 20698503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a gold-multifaceted catalysis approach to the synthesis of highly substituted pyrroles: mechanistic insights via Huisgen cycloaddition studies.
    Ngwerume S; Lewis W; Camp JE
    J Org Chem; 2013 Feb; 78(3):920-34. PubMed ID: 23270303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of cyclic ketones to 2,3-fused pyrroles and substituted indoles.
    Alford JS; Spangler JE; Davies HM
    J Am Chem Soc; 2013 Aug; 135(32):11712-5. PubMed ID: 23915171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifunctional 3,3'-Ph2-BINOL-Mg catalyzed direct asymmetric vinylogous Michael addition of α,β-unsaturated γ-butyrolactam.
    Lin L; Zhang J; Ma X; Fu X; Wang R
    Org Lett; 2011 Dec; 13(24):6410-3. PubMed ID: 22087591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot silver-catalyzed and PIDa-mediated sequential reactions: synthesis of polysubstituted pyrroles directly from alkynoates and amines.
    Liu W; Jiang H; Huang L
    Org Lett; 2010 Jan; 12(2):312-5. PubMed ID: 20000625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-catalyzed synthesis of polysubstituted pyrroles via [4C+1N] cyclization of 4-acetylenic ketones with primary amines.
    Wang Y; Bi X; Li D; Liao P; Wang Y; Yang J; Zhang Q; Liu Q
    Chem Commun (Camb); 2011 Jan; 47(2):809-11. PubMed ID: 21072395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.