BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23184967)

  • 1. Kinetic characterization of the critical step in HIV-1 protease maturation.
    Sadiq SK; Noé F; De Fabritiis G
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20449-54. PubMed ID: 23184967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR.
    Deshmukh L; Tugarinov V; Louis JM; Clore GM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9855-E9862. PubMed ID: 29087351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The maturation of HIV-1 protease precursor studied by discrete molecular dynamics.
    Kimura S; Caldarini M; Broglia RA; Dokholyan NV; Tiana G
    Proteins; 2014 Apr; 82(4):633-9. PubMed ID: 24123234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible catalytic site conformations implicated in modulation of HIV-1 protease autoprocessing reactions.
    Huang L; Li Y; Chen C
    Retrovirology; 2011 Oct; 8():79. PubMed ID: 21985091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing.
    Sadiq SK; De Fabritiis G
    Proteins; 2010 Nov; 78(14):2873-85. PubMed ID: 20715057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.
    Tang C; Louis JM; Aniana A; Suh JY; Clore GM
    Nature; 2008 Oct; 455(7213):693-6. PubMed ID: 18833280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of autoprocessing of a mini-precursor of the aspartic protease of human immunodeficiency virus type 1.
    Co E; Koelsch G; Hartsuck JA; Tang J
    Adv Exp Med Biol; 1995; 362():379-86. PubMed ID: 8540347
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular dynamics and ligand docking of a hinge region variant of South African HIV-1 subtype C protease.
    Zondagh J; Balakrishnan V; Achilonu I; Dirr HW; Sayed Y
    J Mol Graph Model; 2018 Jun; 82():1-11. PubMed ID: 29625416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance.
    Sayer JM; Agniswamy J; Weber IT; Louis JM
    Protein Sci; 2010 Nov; 19(11):2055-72. PubMed ID: 20737578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terminal interface conformations modulate dimer stability prior to amino terminal autoprocessing of HIV-1 protease.
    Agniswamy J; Sayer JM; Weber IT; Louis JM
    Biochemistry; 2012 Feb; 51(5):1041-50. PubMed ID: 22242794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the dynamics of HIV-1 protease: a kinetic network model constructed from atomistic simulations.
    Deng NJ; Zheng W; Gallicchio E; Levy RM
    J Am Chem Soc; 2011 Jun; 133(24):9387-94. PubMed ID: 21561098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic flaps in HIV-1 protease adopt unique ordering at different stages in the catalytic cycle.
    Karthik S; Senapati S
    Proteins; 2011 Jun; 79(6):1830-40. PubMed ID: 21465560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance.
    Scott WR; Schiffer CA
    Structure; 2000 Dec; 8(12):1259-65. PubMed ID: 11188690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations.
    Pietrucci F; Marinelli F; Carloni P; Laio A
    J Am Chem Soc; 2009 Aug; 131(33):11811-8. PubMed ID: 19645490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformations of the HIV-1 protease: A crystal structure data set analysis.
    Palese LL
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1416-1422. PubMed ID: 28846854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance.
    Naicker P; Achilonu I; Fanucchi S; Fernandes M; Ibrahim MA; Dirr HW; Soliman ME; Sayed Y
    J Biomol Struct Dyn; 2013 Dec; 31(12):1370-80. PubMed ID: 23140382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Mutations Can Resist Drug Binding yet Keep HIV-1 Protease Functional.
    Appadurai R; Senapati S
    Biochemistry; 2017 Jun; 56(23):2907-2920. PubMed ID: 28505418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug pressure selected mutations in HIV-1 protease alter flap conformations.
    Galiano L; Ding F; Veloro AM; Blackburn ME; Simmerling C; Fanucci GE
    J Am Chem Soc; 2009 Jan; 131(2):430-1. PubMed ID: 19140783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.