BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23184986)

  • 1. Capturing reaction paths and intermediates in Cre-loxP recombination using single-molecule fluorescence.
    Pinkney JN; Zawadzki P; Mazuryk J; Arciszewska LK; Sherratt DJ; Kapanidis AN
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20871-6. PubMed ID: 23184986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The order of strand exchanges in Cre-LoxP recombination and its basis suggested by the crystal structure of a Cre-LoxP Holliday junction complex.
    Martin SS; Pulido E; Chu VC; Lechner TS; Baldwin EP
    J Mol Biol; 2002 May; 319(1):107-27. PubMed ID: 12051940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential synapsis of loxP sites drives ordered strand exchange in Cre-loxP site-specific recombination.
    Ghosh K; Lau CK; Gupta K; Van Duyne GD
    Nat Chem Biol; 2005 Oct; 1(5):275-82. PubMed ID: 16408057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide trapping of the Holliday junction intermediate in Cre-loxP site-specific recombination.
    Ghosh K; Lau CK; Guo F; Segall AM; Van Duyne GD
    J Biol Chem; 2005 Mar; 280(9):8290-9. PubMed ID: 15591069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversed DNA strand cleavage specificity in initiation of Cre-LoxP recombination induced by the His289Ala active-site substitution.
    Gelato KA; Martin SS; Baldwin EP
    J Mol Biol; 2005 Nov; 354(2):233-45. PubMed ID: 16242714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse.
    Guo F; Gopaul DN; van Duyne GD
    Nature; 1997 Sep; 389(6646):40-6. PubMed ID: 9288963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of Cre recombinase synaptic complex assembly and activation illuminated by Cryo-EM.
    Stachowski K; Norris AS; Potter D; Wysocki VH; Foster MP
    Nucleic Acids Res; 2022 Feb; 50(3):1753-1769. PubMed ID: 35104890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination.
    Gopaul DN; Guo F; Van Duyne GD
    EMBO J; 1998 Jul; 17(14):4175-87. PubMed ID: 9670032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ Int.
    Fan HF; Ma CH; Jayaram M
    Nucleic Acids Res; 2013 Aug; 41(14):7031-47. PubMed ID: 23737451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination.
    Shoura MJ; Giovan SM; Vetcher AA; Ziraldo R; Hanke A; Levene SD
    Nucleic Acids Res; 2020 May; 48(8):4371-4381. PubMed ID: 32182357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tethered fluorophore motion: studying large DNA conformational changes by single-fluorophore imaging.
    May PFJ; Pinkney JNM; Zawadzki P; Evans GW; Sherratt DJ; Kapanidis AN
    Biophys J; 2014 Sep; 107(5):1205-1216. PubMed ID: 25185556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system.
    Kilbride EA; Burke ME; Boocock MR; Stark WM
    J Mol Biol; 2006 Jan; 355(2):185-95. PubMed ID: 16303133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometry of the DNA Substrates in Cre-loxP Site-Specific Recombination.
    Guo F; Gopaul DN; Van Duyne GD
    J Biomol Struct Dyn; 2000; 17 Suppl 1():141-6. PubMed ID: 22607417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation.
    Ennifar E; Meyer JE; Buchholz F; Stewart AF; Suck D
    Nucleic Acids Res; 2003 Sep; 31(18):5449-60. PubMed ID: 12954782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM.
    Ma CH; Liu YT; Savva CG; Rowley PA; Cannon B; Fan HF; Russell R; Holzenburg A; Jayaram M
    J Mol Biol; 2014 Feb; 426(4):793-815. PubMed ID: 24286749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational transitions during FtsK translocase activation of individual XerCD-dif recombination complexes.
    Zawadzki P; May PF; Baker RA; Pinkney JN; Kapanidis AN; Sherratt DJ; Arciszewska LK
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17302-7. PubMed ID: 24101525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination.
    Fan HF
    Nucleic Acids Res; 2012 Jul; 40(13):6208-22. PubMed ID: 22467208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural view of cre-loxp site-specific recombination.
    Van Duyne GD
    Annu Rev Biophys Biomol Struct; 2001; 30():87-104. PubMed ID: 11340053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse.
    Guo F; Gopaul DN; Van Duyne GD
    Proc Natl Acad Sci U S A; 1999 Jun; 96(13):7143-8. PubMed ID: 10377382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cre induces an asymmetric DNA bend in its target loxP site.
    Lee L; Chu LC; Sadowski PD
    J Biol Chem; 2003 Jun; 278(25):23118-29. PubMed ID: 12686545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.