These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 23184995)
21. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. Narita M; Nagumo Y; Hashimoto S; Narita M; Khotib J; Miyatake M; Sakurai T; Yanagisawa M; Nakamachi T; Shioda S; Suzuki T J Neurosci; 2006 Jan; 26(2):398-405. PubMed ID: 16407535 [TBL] [Abstract][Full Text] [Related]
22. Chronic nicotine exposure switches the functional role of mesolimbic dopamine transmission in the processing of nicotine's rewarding and aversive effects. Tan H; Bishop SF; Lauzon NM; Sun N; Laviolette SR Neuropharmacology; 2009 Mar; 56(4):741-51. PubMed ID: 19133278 [TBL] [Abstract][Full Text] [Related]
23. Oxytocin injected into the ventral subiculum or the posteromedial cortical nucleus of the amygdala induces penile erection and increases extracellular dopamine levels in the nucleus accumbens of male rats. Melis MR; Succu S; Sanna F; Boi A; Argiolas A Eur J Neurosci; 2009 Oct; 30(7):1349-57. PubMed ID: 19769589 [TBL] [Abstract][Full Text] [Related]
24. Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Laviolette SR; van der Kooy D Mol Psychiatry; 2003 Jan; 8(1):50-9, 9. PubMed ID: 12556908 [TBL] [Abstract][Full Text] [Related]
25. Capturing the aversive state of cephalic pain preclinically. De Felice M; Eyde N; Dodick D; Dussor GO; Ossipov MH; Fields HL; Porreca F Ann Neurol; 2013 Aug; 74(2):257-65. PubMed ID: 23686557 [TBL] [Abstract][Full Text] [Related]
27. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area. Ouachikh O; Dieb W; Durif F; Hafidi A Behav Brain Res; 2013 Sep; 252():24-31. PubMed ID: 23727149 [TBL] [Abstract][Full Text] [Related]
28. GABA(A) receptors in the ventral tegmental area control bidirectional reward signalling between dopaminergic and non-dopaminergic neural motivational systems. Laviolette SR; van der Kooy D Eur J Neurosci; 2001 Mar; 13(5):1009-15. PubMed ID: 11264674 [TBL] [Abstract][Full Text] [Related]
29. Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Sagheddu C; Aroni S; De Felice M; Lecca S; Luchicchi A; Melis M; Muntoni AL; Romano R; Palazzo E; Guida F; Maione S; Pistis M Neuropharmacology; 2015 Oct; 97():383-93. PubMed ID: 26113399 [TBL] [Abstract][Full Text] [Related]
30. Increased gabaergic input to ventral tegmental area dopaminergic neurons associated with decreased cocaine reinforcement in mu-opioid receptor knockout mice. Mathon DS; Lesscher HM; Gerrits MA; Kamal A; Pintar JE; Schuller AG; Spruijt BM; Burbach JP; Smidt MP; van Ree JM; Ramakers GM Neuroscience; 2005; 130(2):359-67. PubMed ID: 15664692 [TBL] [Abstract][Full Text] [Related]
31. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. Jerlhag E; Janson AC; Waters S; Engel JA PLoS One; 2012; 7(11):e49557. PubMed ID: 23166710 [TBL] [Abstract][Full Text] [Related]
32. Opposite effects of gamma(1)- and gamma(2)-melanocyte stimulating hormone on regulation of the dopaminergic mesolimbic system in rats. Jansone B; Bergstrom L; Svirskis S; Lindblom J; Klusa V; Wikberg JE Neurosci Lett; 2004 May; 361(1-3):68-71. PubMed ID: 15135895 [TBL] [Abstract][Full Text] [Related]
33. Pain relief induces dopamine release in the rat nucleus accumbens during the early but not late phase of neuropathic pain. Kato T; Ide S; Minami M Neurosci Lett; 2016 Aug; 629():73-78. PubMed ID: 27369326 [TBL] [Abstract][Full Text] [Related]
34. Transient receptor potential vanilloid 3 (TRPV3) in the ventral tegmental area of rat: Role in modulation of the mesolimbic-dopamine reward pathway. Singh U; Kumar S; Shelkar GP; Yadav M; Kokare DM; Goswami C; Lechan RM; Singru PS Neuropharmacology; 2016 Nov; 110(Pt A):198-210. PubMed ID: 27084697 [TBL] [Abstract][Full Text] [Related]
35. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. Navratilova E; Xie JY; Meske D; Qu C; Morimura K; Okun A; Arakawa N; Ossipov M; Fields HL; Porreca F J Neurosci; 2015 May; 35(18):7264-71. PubMed ID: 25948274 [TBL] [Abstract][Full Text] [Related]
36. Role of mesolimbic ghrelin in the acquisition of cocaine reward. Dunn DP; Bastacky JMR; Gray CC; Abtahi S; Currie PJ Neurosci Lett; 2019 Sep; 709():134367. PubMed ID: 31278962 [TBL] [Abstract][Full Text] [Related]
37. Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity. Kalivas PW; Widerlöv E; Stanley D; Breese G; Prange AJ J Pharmacol Exp Ther; 1983 Oct; 227(1):229-37. PubMed ID: 6620168 [TBL] [Abstract][Full Text] [Related]
38. Lack of correlation between the activity of the mesolimbic dopaminergic system and the rewarding properties of pregabalin in mouse. Coutens B; Mouledous L; Stella M; Rampon C; Lapeyre-Mestre M; Roussin A; Guiard BP; Jouanjus E Psychopharmacology (Berl); 2019 Jul; 236(7):2069-2082. PubMed ID: 30879119 [TBL] [Abstract][Full Text] [Related]
39. Cocaine reward and hyperactivity in the rat: sites of mu opioid receptor modulation. Soderman AR; Unterwald EM Neuroscience; 2008 Jul; 154(4):1506-16. PubMed ID: 18550291 [TBL] [Abstract][Full Text] [Related]
40. Chemokine CCR5 and cocaine interactions in the brain: Cocaine enhances mesolimbic CCR5 mRNA levels and produces place preference and locomotor activation that are reduced by a CCR5 antagonist. Nayak SU; Cicalese S; Tallarida C; Oliver CF; Rawls SM Brain Behav Immun; 2020 Jan; 83():288-292. PubMed ID: 31557508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]