These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23184996)

  • 1. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes.
    Levy ED; De S; Teichmann SA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20461-6. PubMed ID: 23184996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative residue-level structure-evolution relationships in the yeast membrane proteome.
    Franzosa EA; Xue R; Xia Y
    Genome Biol Evol; 2013; 5(4):734-44. PubMed ID: 23512408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Abundance Biases the Amino Acid Composition of Disordered Regions to Minimize Non-functional Interactions.
    Dubreuil B; Matalon O; Levy ED
    J Mol Biol; 2019 Dec; 431(24):4978-4992. PubMed ID: 31442477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalent structural disorder in E. coli and S. cerevisiae proteomes.
    Tompa P; Dosztanyi Z; Simon I
    J Proteome Res; 2006 Aug; 5(8):1996-2000. PubMed ID: 16889422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple definition of structural regions in proteins and its use in analyzing interface evolution.
    Levy ED
    J Mol Biol; 2010 Nov; 403(4):660-70. PubMed ID: 20868694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae?
    Raiford DW; Heizer EM; Miller RV; Akashi H; Raymer ML; Krane DE
    J Mol Evol; 2008 Dec; 67(6):621-30. PubMed ID: 18937004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome folding kinetics is limited by protein halflife.
    Zou T; Williams N; Ozkan SB; Ghosh K
    PLoS One; 2014; 9(11):e112701. PubMed ID: 25393560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution.
    Mandal A; Mandal S; Park MH
    PLoS One; 2014; 9(11):e111800. PubMed ID: 25364902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avoidance of protein unfolding constrains protein stability in long-term evolution.
    Razban RM; Dasmeh P; Serohijos AWR; Shakhnovich EI
    Biophys J; 2021 Jun; 120(12):2413-2424. PubMed ID: 33932438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs.
    Beckmann BM; Horos R; Fischer B; Castello A; Eichelbaum K; Alleaume AM; Schwarzl T; Curk T; Foehr S; Huber W; Krijgsveld J; Hentze MW
    Nat Commun; 2015 Dec; 6():10127. PubMed ID: 26632259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProteomeVis: a web app for exploration of protein properties from structure to sequence evolution across organisms' proteomes.
    Razban RM; Gilson AI; Durfee N; Strobelt H; Dinkla K; Choi JM; Pfister H; Shakhnovich EI
    Bioinformatics; 2018 Oct; 34(20):3557-3565. PubMed ID: 29741573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between relative solvent accessibility and evolutionary rate in protein evolution.
    Ramsey DC; Scherrer MP; Zhou T; Wilke CO
    Genetics; 2011 Jun; 188(2):479-88. PubMed ID: 21467571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure based approach for understanding organism specific recognition of protein-RNA complexes.
    Nagarajan R; Chothani SP; Ramakrishnan C; Sekijima M; Gromiha MM
    Biol Direct; 2015 Mar; 10():8. PubMed ID: 25886642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative RNA degradation pathways by the exonuclease Pop2p from
    Ye X; Axhemi A; Jankowsky E
    RNA; 2021 Apr; 27(4):465-476. PubMed ID: 33408095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical code for quinary protein interactions in
    Mu X; Choi S; Lang L; Mowray D; Dokholyan NV; Danielsson J; Oliveberg M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):E4556-E4563. PubMed ID: 28536196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel protein-protein interaction in the RES (REtention and Splicing) complex.
    Tripsianes K; Friberg A; Barrandon C; Brooks M; van Tilbeurgh H; Seraphin B; Sattler M
    J Biol Chem; 2014 Oct; 289(41):28640-50. PubMed ID: 25160624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proportion of solvent-exposed amino acids in a protein and rate of protein evolution.
    Lin YS; Hsu WL; Hwang JK; Li WH
    Mol Biol Evol; 2007 Apr; 24(4):1005-11. PubMed ID: 17264066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb).
    Orfanoudaki G; Economou A
    Mol Cell Proteomics; 2014 Dec; 13(12):3674-87. PubMed ID: 25210196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using genome-wide protein sequence data to predict amino acid conservation.
    Palenchar P; Mount M; Cusato D; Dougherty J
    Protein J; 2008 Sep; 27(6):401-7. PubMed ID: 18792769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.