BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2318529)

  • 1. Thermoregulation of protein synthesis in Borrelia burgdorferi.
    Cluss RG; Boothby JT
    Infect Immun; 1990 Apr; 58(4):1038-42. PubMed ID: 2318529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the heat shock response and identification of heat shock protein antigens of Borrelia burgdorferi.
    Carreiro MM; Laux DC; Nelson DR
    Infect Immun; 1990 Jul; 58(7):2186-91. PubMed ID: 2194963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinate synthesis and turnover of heat shock proteins in Borrelia burgdorferi: degradation of DnaK during recovery from heat shock.
    Cluss RG; Goel AS; Rehm HL; Schoenecker JG; Boothby JT
    Infect Immun; 1996 May; 64(5):1736-43. PubMed ID: 8613385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Borrelia burgdorferi RevA antigen is a surface-exposed outer membrane protein whose expression is regulated in response to environmental temperature and pH.
    Carroll JA; El-Hage N; Miller JC; Babb K; Stevenson B
    Infect Immun; 2001 Sep; 69(9):5286-93. PubMed ID: 11500397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunologic and structural characterization of the dominant 66- to 73-kDa antigens of Borrelia burgdorferi.
    Luft BJ; Gorevic PD; Jiang W; Munoz P; Dattwyler RJ
    J Immunol; 1991 Apr; 146(8):2776-82. PubMed ID: 2016526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the heat shock response in M-14 human melanoma cells continuously exposed to supranormal temperatures.
    Delpino A; Mileo AM; Mattei E; Ferrini U
    Exp Mol Pathol; 1986 Oct; 45(2):128-41. PubMed ID: 3770142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock response of spirochetes.
    Stamm LV; Gherardini FC; Parrish EA; Moomaw CR
    Infect Immun; 1991 Apr; 59(4):1572-5. PubMed ID: 2004832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection of Chinese hamster ovary cells from heat killing by treatment with cycloheximide or puromycin: involvement of HSPs?
    Lee YJ; Dewey WC; Li GC
    Radiat Res; 1987 Aug; 111(2):237-53. PubMed ID: 3628714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the protein profile and antigenicity of different Borrelia burgdorferi strains after reintroduction to Ixodes ricinus ticks.
    Hu CM; Gern L; Aeschlimann A
    Parasite Immunol; 1992 Jul; 14(4):415-27. PubMed ID: 1437234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of OspC expression by Borrelia burgdorferi in the presence of tick hemolymph.
    Johns RH; Sonenshine DE; Hynes WL
    FEMS Microbiol Lett; 2000 Dec; 193(1):137-41. PubMed ID: 11094292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the heat shock response of Xenopus laevis embryos.
    Nickells RW; Browder LW; Wang TI
    Biochem Cell Biol; 1989 Oct; 67(10):687-95. PubMed ID: 2590525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete.
    Radolf JD; Goldberg MS; Bourell K; Baker SI; Jones JD; Norgard MV
    Infect Immun; 1995 Jun; 63(6):2154-63. PubMed ID: 7768594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemiluminescent analysis of Borrelia burgdorferi penicillin-binding proteins using ampicillin conjugated to digoxigenin.
    Norgard MV; Baker SI; Radolf JD
    Microb Pathog; 1995 Oct; 19(4):257-72. PubMed ID: 8825913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi.
    Alban PS; Johnson PW; Nelson DR
    Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():119-127. PubMed ID: 10658658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the heat-shock response of Trichomonas vaginalis.
    Davis SR; Lushbaugh WB
    Am J Trop Med Hyg; 1992 Jul; 47(1):70-7. PubMed ID: 1636886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal changes in outer surface proteins A and C of the lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice.
    Schwan TG; Piesman J
    J Clin Microbiol; 2000 Jan; 38(1):382-8. PubMed ID: 10618120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi.
    Kraiczy P; Skerka C; Brade V; Zipfel PF
    Infect Immun; 2001 Dec; 69(12):7800-9. PubMed ID: 11705962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors influencing the antigenic reactivity of Borrelia burgdorferi, the Lyme disease spirochete.
    Schwan TG; Simpson WJ
    Scand J Infect Dis Suppl; 1991; 77():94-101. PubMed ID: 1947819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of environmental pH on membrane proteins in Borrelia burgdorferi.
    Carroll JA; Garon CF; Schwan TG
    Infect Immun; 1999 Jul; 67(7):3181-7. PubMed ID: 10377088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of moderately infectious Borrelia burgdorferi sensu stricto from attenuated cultures by using complement-mediated, antibody-dependent lysis selection technique in a mammalian tissue co-culture system.
    Sen E; Schell RF
    Microbes Infect; 2003 Aug; 5(10):869-78. PubMed ID: 12919855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.